
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV INFORMAČNÍCH SYSTÉMŮ

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF INFORMATION SYSTEMS

ONE-SIDED RANDOM CONTEXT GRAMMARS
JEDNOSTRANNÉ GRAMATIKY S NAHODILÝM KONTEXTEM

DISERTAČNÍ PRÁCE
PHD THESIS

AUTOR PRÁCE Ing. PETR ZEMEK
AUTHOR

VEDOUCÍ PRÁCE prof. RNDr. ALEXANDER MEDUNA, CSc.
SUPERVISOR

BRNO 2014

PREPRIN
T

PREPRIN
T

ii

Abstract

This thesis introduces the notion of a one-sided random context grammar as a
context-free-based regulated grammar, in which a set of permitting symbols and
a set of forbidding symbols are attached to every rule, and its set of rules is divided
into the set of left random context rules and the set of right random context rules. A
left random context rule can rewrite a nonterminal if each of its permitting symbols
occurs to the left of the rewritten symbol in the current sentential form while each
of its forbidding symbols does not occur there. A right random context rule is ap-
plied analogically except that the symbols are examined to the right of the rewritten
symbol.

The thesis is divided into three parts. The first part gives a motivation behind
introducing one-sided random context grammars and places all the covered material
into the scientific context. Then, it gives an overview of formal language theory and
some of its lesser-known areas that are needed to fully grasp some of the upcoming
topics.

The second part forms the heart of the thesis. It formally defines one-sided ran-
dom context grammars and studies them from many points of view. Generative
power, relations to other types of grammars, reduction, normal forms, leftmost
derivations, generalized and parsing-related versions all belong between the studied
topics.

The final part of this thesis closes its discussion by adding remarks regarding its
coverage. More specifically, these remarks concern application perspectives, bibli-
ography, and open problem areas.

Keywords

formal language theory, regulated grammars, random context grammars, one-sided
random context grammars, permitting grammars, forbidding grammars, generative
power, reduction, normal forms, leftmost derivations, generalized versions, LL ver-
sions

Bibliographic Citation

Zemek, P.: One-sided random context grammars, Ph.D. thesis, Faculty of Informa-
tion Technology, Brno University of Technology, Brno, CZ (2014)

PREPRIN
T

iii

Abstrakt

Tato disertační práce zavádí jednostranné gramatiky s nahodilým kontextem jako
řízené gramatiky založené na bezkontextových gramatikách. V těchto gramatikách
je ke každému pravidlu přiřazena množina povolujících symbolů a množina za-
kazujících symbolů a množina pravidel je rozdělena na množinu levých pravidel
s nahodilým kontextem a množinu pravých pravidel s nahodilým kontextem. Levým
pravidlem s nahodilým kontextem lze přepsat neterminál pokud se všechny povolu-
jící symboly vyskytují vlevo od přepisovaného neterminálu a žádný zakazující sym-
bol tam přítomen není. Pravé pravidlo s nahodilým kontextem lze aplikovat analog-
icky, ale ona kontrola na přítomnost a nepřítomnost symbolů je provedena doprava
od přepisovaného neterminálu.

Práce je rozdělena na tři části. První část uvádí motivaci za zavedením jednos-
tranných gramatik s nahodilým kontextem a umist’uje materiál pokrytý v této práci
do vědeckého kontextu. Poté dává přehled základů teorie formálních jazyků a něk-
terých méně známých oblastí, jejichž znalost je nutná pro pochopení studovaného
tématu.

Druhá část tvoří jádro práce. Formálně definuje jednostranné gramatiky s na-
hodilým kontextem a studuje je z mnoha pohledů. Mezi studovaná témata patří
generativní síla, vztah k jiným typům gramatik, redukce, normální formy, nejlevější
derivace, zobecněné a LL verze těchto gramatiky.

Třetí část této práce zakončuje diskusi několika poznámkami. Mezi ně patří
poznámky týkající se aplikovatelnosti zavedených gramatik v praxi, bibliografie a
otevřených problémů.

Klíčová slova

teorie formálních jazyků, řízené gramatiky, gramatiky s nahodilým kontextem, jed-
nostranné gramatiky s nahodilým kontextem, povolující gramatiky, zakazující gra-
matiky, generativní síla, redukce, normální formy, nejlevější derivace, zobecněné
verze, LL verze

Bibliografická citace

ZEMEK, Petr. One-sided random context grammars. Brno, 2014. Disertační práce.
Fakulta informačních technologií, Vysoké učení technické v Brně.

PREPRIN
T

iv

Declaration

I hereby declare that this thesis is my own work that has been created under the su-
pervision of prof. RNDr. Alexander Meduna, CSc. It is based on the following two
books, one book chapter, and nine papers that I have written jointly with my super-
visor: [78–84, 86, 87, 109, 110]. Furthermore, Chapter 9 is based on [74], which
is a paper written together with Lukáš Vrábel. Where other sources of information
have been used, they have been duly acknowledged.

Petr Zemek
March 3, 2014

Acknowledgements

This thesis was supported by several grants—namely, BUT FIT grants FIT-S-11-2
and FIT-S-14-2299, research plan CEZ MŠMT MSM0021630528, European Re-
gional Development Fund in the IT4Innovations Centre of Excellence (MŠMT
CZ1.1.00/02.0070), and Visual Computing Competence Center (TE01010415).

I wish to thank prof. RNDr. Alexander Meduna, CSc. for his support during his
supervision of this work, for valuable and inspiring consultations, and for his ad-
vice and recommendations from which I have benefited greatly. I would also like to
thank many colleagues from the university for fruitful discussions about formal lan-
guages. My special thanks go to Lukáš Vrábel, Zbyněk Křivka, Jiří Koutný, Ondřej
Soukup, and Martin Čermák. Finally, I thank my family for their enthusiastic en-
couragement; most importantly, I deeply appreciate the great patience and constant
support of my girlfriend Daniela.

PREPRIN
T

Contents

Part I Introduction and Terminology

1 Introduction . 2

2 Rudiments of Formal Language Theory . 7
2.1 Mathematical Notation . 7
2.2 Strings and Languages . 7
2.3 Grammars and Language Families . 9

Part II One-Sided Random Context Grammars

3 Definitions and Examples . 17
3.1 Definitions . 17
3.2 Examples . 19
3.3 Denotation of Language Families . 21

4 Generative Power . 22
4.1 One-Sided Random Context Grammars . 22
4.2 One-Sided Forbidding Grammars . 27
4.3 One-Sided Permitting Grammars . 37

5 Normal Forms . 39
5.1 First Normal Form . 39
5.2 Second Normal Form . 43
5.3 Third Normal Form . 44
5.4 Fourth Normal Form . 45

v

PREPRIN
T

Contents vi

6 Reduction . 48
6.1 Total Number of Nonterminals . 49
6.2 Number of Left and Right Random Context Nonterminals 55
6.3 Number of Right Random Context Rules . 62

7 Leftmost Derivations . 70
7.1 Type-1 Leftmost Derivations . 71
7.2 Type-2 Leftmost Derivations . 73
7.3 Type-3 Leftmost Derivations . 78

8 Generalized One-Sided Forbidding Grammars . 82
8.1 Definitions and Examples . 83
8.2 Generative Power . 85

9 LL One-Sided Random Context Grammars . 94
9.1 Definitions . 95
9.2 A Motivational Example . 97
9.3 Generative Power . 97

Part III Conclusion

10 Concluding Remarks . 105
10.1Application Perspectives . 105
10.2Bibliographical and Historical Remarks . 107
10.3Open Problem Areas . 108

References . 110

Language Family Index . 117

Subject Index . 119

PREPRIN
T

Part I
Introduction and Terminology

This part gives an introduction to the present thesis in order to express all its upcom-
ing discussion clearly and precisely. First, it places all the material covered in the
thesis into the scientific context. Then, it gives an overview of formal language the-
ory in order to make the entire thesis completely self-contained. This part consists
of two chapters.

Chapter 1 represents an introduction to this thesis. First, it argues that regulated
rewriting with its regulated formal models forms a very important branch of formal
language theory as a whole. Then, it provides a motivation behind introducing and
studying one-sided random context grammars—the main topic of this thesis—as
a new variant of regulated grammars. After that, it gives the organization of the
present thesis.

Chapter 2 gives an overview of formal language theory. Apart from its classical
rudiments, it covers several lesser-known areas of this theory, such as fundamentals
concerning three types of regulated grammars, because these areas are also needed
to fully grasp some upcoming topics included in this thesis.

Readers having solid background in the topics covered in Chapter 2 can only treat
it as a reference for the terminology used throughout the rest of this thesis.

PREPRIN
T

Chapter 1
Introduction

Formal Languages and Regulated Grammars

Formal languages, such as programming languages, are applied in a great number
of scientific disciplines, ranging from biology through linguistics up to informatics
(see [98–100]). As obvious, to use them properly, they have to be precisely specified
in the first place. Most often, they are defined by mathematical models with finitely
many rules by which they rewrite sequences of symbols, called strings.

Over its history, formal language theory has introduced a great variety of these
language-defining models. Despite their diversity, they can be classified into two
basic categories—generative and recognition language models. Generative models,
better known as grammars, define strings of their language so their rewriting process
generates them from a special start symbol. On the other hand, recognition models,
better known as automata, define strings of their language by a rewriting process
that starts from these strings and ends in a special set of strings, usually called final
configurations.

Concerning grammars, the classical theory of formal languages has often clas-
sified all grammars into two fundamental categories—context-free grammars and
non-context-free grammars. As their name suggests, context-free grammars are
based upon context-free rules, by which these grammars rewrite symbols regardless
of the context surrounding them. As opposed to them, non-context-free grammars
rewrite symbols according to context-dependent rules, whose application usually
depends on rather strict conditions placed upon the context surrounding the rewrit-
ten symbols, and this way of context-dependent rewriting often makes them clumsy
and inapplicable in practice. From this point of view, we obviously always prefer us-
ing context-free grammars, but they have their drawbacks, too. Perhaps most impor-
tantly, context-free grammars are significantly less powerful than non-context-free
grammars. Considering all these pros and cons, it comes as no surprise that modern
formal language theory has intensively and systematically struggled to come with
new types of grammars that are underlined by context-free rules, but which are more

2

PREPRIN
T

1 Introduction 3

powerful than ordinary context-free grammars. Regulated versions of context-free
grammars, briefly referred to as regulated grammars in this thesis, represent per-
haps the most successful and significant achievement in this direction. They are
based upon context-free grammars extended by additional regulating mechanisms
by which they control the way the language generation is performed.

Over the last four decades, formal language theory has introduced an investi-
gated many regulated grammars (see [16, 79, 87], Chapter 13 of [54], and Chap-
ter 3 of [99] for an overview of the most important results). Arguably, one of the
most studied type of regulated grammars are random context grammars, which are
central to this thesis.

Random Context Grammars

In essence, random context grammars (see Section 1.1 in [16]) regulate the lan-
guage generation process so they require the presence of some prescribed symbols
and, simultaneously, the absence of some others in the rewritten sentential forms.
More precisely, random context grammars are based upon context-free rules, each
of which may be extended by finitely many permitting and forbidding nonterminal
symbols. A rule like this can rewrite the current sentential form provided that all its
permitting symbols occur in the sentential form while all its forbidding symbols do
not occur there.

Random context grammars are significantly stronger than ordinary context-free
grammars. In fact, they characterize the family of recursively enumerable lan-
guages (see Theorem 1.2.5 in [16]), and this computational completeness obviously
represents their indisputable advantage. Also, propagating random context gram-
mars, which do not have any erasing rules—that is, rules with the empty string on
their right-hand sides—are stronger than context-free grammars. However, they are
strictly less powerful than context-sensitive grammars. Indeed, they generate a lan-
guage family that is strictly included in the family of context sensitive languages
(see Theorem 1.2.4 in [16]).

From a pragmatical standpoint, however, random context grammars have a draw-
back consisting in the necessity of scanning the current sentential form in its en-
tirety during every single derivation step. From this viewpoint, it is highly desirable
to modify these grammars so they scan only a part of the sentential form, yet they
keep their computational completeness. One-sided random context grammars—the
topic of the present thesis—represent a modification like this.

PREPRIN
T

1 Introduction 4

One-Sided Random Context Grammars

Specifically, in every one-sided random context grammar, the set of rules is divided
into the set of left random context rules and the set of right random context rules.
When applying a left random context rule, the grammar checks the existence and
absence of its permitting and forbidding symbols, respectively, only in the prefix
to the left of the rewritten nonterminal in the current sentential form. Analogously,
when applying a right random context rule, it checks the existence and absence of
its permitting and forbidding symbols, respectively, only in the suffix to the right of
the rewritten nonterminal. Otherwise, it works just like any ordinary random context
grammar.

As the main result of this thesis, we demonstrate that propagating versions of
one-sided random context grammars, which possess no erasing rules, characterize
the family of context-sensitive languages, and with erasing rules, they characterize
the family of recursively enumerable languages.

Furthermore, we discuss the generative power of several special cases of one-
sided random context grammars. Specifically, we prove that one-sided permitting
grammars, which have only permitting rules, are more powerful than context-free
grammars; on the other hand, they are no more powerful than so-called scattered
context grammars (see [35, 73]). One-sided forbidding grammars, which have
only forbidding rules, are equivalent to so-called selective substitution grammars
(see [39, 40, 95]). Finally, left forbidding grammars, which have only left-sided
forbidding rules, are only as powerful as context-free grammars.

Apart from the generative power of one-sided random context grammars and
their special cases, we investigate the following aspects of these grammars. First,
we establish four normal forms of one-sided random context grammars, in which
all rules satisfy some prescribed properties or format. Then, we study a reduction
of one-sided random context grammars with respect to the number of nonterminals
and rules. After that, we place three leftmost derivation restrictions on one-sided
random context grammars and investigate their generative power. We also study
generalized versions of one-sided random context grammars, in which strings of
symbols rather than single symbols can be required or forbidden. Finally, we study
one-sided random context grammars from a more practical viewpoint by investigat-
ing their parsing-related variants.

To summarize, this thesis is primarily and principally meant as a theoretical treat-
ment of one-sided random context grammars, which represent a modification of
random context grammars. Apart from this theoretical treatment, however, we also
cover some application perspectives to give the reader ideas about their applicability
in practice.

PREPRIN
T

1 Introduction 5

Motivation

Taking into account the definition of one-sided random context grammars and all
the results sketched above, we see that these grammars may fulfill an important role
in the language theory and its applications for the following four reasons.

(I) From a practical viewpoint, one-sided random context grammars examine the ex-
istence of permitting symbols and the absence of forbidding symbols only within
a portion of the current sentential form while ordinary random context grammars
examine the entire current sentential form. As a result, the one-sided versions of
these grammars work in a more economical and, therefore, efficient way than the
ordinary versions. Moreover, one-sided random context grammars provide a finer
control over the regulation process. Indeed, the designer of the grammar may se-
lect whether the presence or absence of symbols is examined to the left or to the
right. In the case of ordinary random context grammars, this selection cannot be
done since they scan the sentential forms in their entirety.

(II) The one-sided versions of propagating random context grammars are stronger
than ordinary propagating random context grammars. Indeed, the language fam-
ily defined by propagating random context grammars is properly included in the
family of context-sensitive languages (see Theorem 1.2.4 in [16]). One-sided ran-
dom context grammars are as powerful as ordinary random context grammars.
These results come as a surprise because one-sided random context grammars
examine only parts of sentential forms as pointed out in (I) above.

(III) Left forbidding grammars were introduced in [31], which also demonstrated that
these grammars only define the family of context-free languages (see Theorem 1
in [31]). It is more than natural to generalize left forbidding grammars to one-
sided forbidding grammars, which are stronger than left forbidding grammars
(see Corollary 4.3.6 in this thesis). As a matter of fact, even propagating left per-
mitting grammars, introduced in [10], are stronger than left forbidding grammars
because they define a proper superfamily of the family of context-free languages
(see Corollary 4.3.4 in this thesis). In the thesis, we also generalize left permitting
grammars to one-sided permitting grammars and study their properties.

(IV) In the future, one might find results achieved in this thesis useful when attempting
to solve some well-known open problems. Specifically, recall that every propa-
gating scattered context grammar can be turned to an equivalent context-sensitive
grammar (see Theorem 3.21 in [73]), but it is a longstanding open problem
whether these two kinds of grammars are actually equivalent—the PSC = CS
problem (see [73]). If in the future one proves that propagating one-sided permit-
ting grammars and propagating one-sided random context grammars are equiv-
alent, then so are propagating scattered context grammars and context-sensitive
grammars (see Theorem 4.3.3 in this thesis), so the PSC = CS problem would be
solved.

PREPRIN
T

1 Introduction 6

Organization

The text is divided into ten chapters. After this introductory Chapter 1, Chapter 2
briefly reviews formal language theory. It covers all the notions that are necessary
to follow the rest of this thesis.

Chapters 3 through 9 represent the heart of this thesis. They introduce one-sided
random context grammars and study them from many points of view. In a greater
detail, Chapter 3 defines one-sided random context grammars and illustrates them
by examples. Chapter 4 studies the generative power of these grammars. Chapter 5
establishes four normal forms of one-sided random context grammars. Chapter 6
investigates their descriptional complexity. Chapter 7 introduces three types of left-
most derivation restrictions placed upon one-sided random context grammars, and
studies their effect to the generative power of these grammars. Chapter 8 intro-
duces and investigates generalized versions of one-sided random context grammars.
Chapter 9 introduces and investigates parsing-related variants of one-sided random
context grammars, which may be applied in practice.

Chapter 10 closes the thesis by making several final remarks concerning the cov-
ered material with a special focus on its future developments. It concerns application
perspectives of one-sided random context grammars, bibliographic comments and
references, and open problem areas.

PREPRIN
T

Chapter 2
Rudiments of Formal Language Theory

The present chapter briefly reviews formal language theory. It covers all the notions
that are necessary to follow the rest of this thesis. Apart from well-known essentials
of formal language theory, it includes lesser-known notions, such as a variety of
regulated grammars. They are also needed to establish several upcoming results, so
the reader should pay a special attention to them, too.

This chapter consists of three sections. Section 2.1 gives the used mathemati-
cal notation. Section 2.2 covers strings, languages, and operations over them. Sec-
tion 2.3 concerns grammars and language families.

2.1 Mathematical Notation

For a set Q, card(Q) denotes the cardinality of Q, and 2Q denotes the power set
of Q. For two sets P and Q, P ⊆ Q denotes that P is a subset of Q; P ⊂ Q denotes
that A ⊆ B and A 6= B—that is, P is a proper subset of Q. Set intersection, union,
and difference are denoted by ∩, ∪, and −, respectively. The empty set is denoted
by /0.

For a relation ρ , ρ+ and ρ∗ denote the transitive and transitive-reflexive closure
of ρ , respectively.

2.2 Strings and Languages

An alphabet Σ is a finite, nonempty set of elements called symbols. A string over Σ

is any finite sequence of symbols from Σ . We omit all separating commas in strings;
that is, for a string a1,a2, . . . ,an, for some n ≥ 1, we write a1a2 · · ·an instead. The
empty string, denoted by ε , is the string that is formed by no symbols—that is, the

7

PREPRIN
T

2.2 Strings and Languages 8

empty sequence. By Σ∗, we denote the set of all strings over Σ (including ε). Set
Σ+ = Σ∗−{ε}.

Let x be a string over Σ—that is, x ∈ Σ∗—and express x as = a1a2 · · ·an, where
ai ∈ Σ , for all i = 1 . . . , n, for some n≥ 0 (the case when n = 0 means that x = ε).
The length of x, denoted by |x|, is defined as |x| = n. The alphabet of x, denoted
by alph(x), is defined as alph(x) = {a1,a2, . . . ,an}; informally, it is the set of sym-
bols appearing in x. Notice that |ε|= 0 and alph(ε) = /0.

Let x and y be two strings over Σ . Then, xy is the concatenation of x and y. Note
that xε = εx = x. If x can be written in the form x = uv, for some u,v ∈ Σ∗, then
u is a prefix of x and v is a suffix of x. If 0 < |u| < |x|, then u is a proper prefix
of x; similarly, if 0 < |v| < |x|, then v is a proper suffix of x. If x = uvw, for some
u,v,w ∈ Σ∗, then v is a substring of x. The set of all substrings of x is denoted
by sub(x).

Let n be a nonnegative integer. Then, the nth power of x, denoted by xn, is a string
over Σ recursively defined as

(1) x0 = ε

(2) xn = xxn−1 for n≥ 1

A language L over Σ is any set of strings over Σ—that is, L ⊆ Σ∗. The set Σ∗ is
called the universal language because it consists of all strings over Σ . If L is a finite
set, then it is a finite language; otherwise, it is an infinite language. The set of all
finite languages over Σ is denoted by fin(Σ). For L ∈ fin(Σ), max-len(L) denotes
the length of the longest string in L. We set max-len(/0) = 0. The empty language is
denoted by /0.

The alphabet of L, denoted by alph(L), is defined as

alph(L) =
⋃
x∈L

alph(x)

As all languages are sets, all common operations over sets can be applied to them.
Specifically,

L1∪L2 = {x | x ∈ L1 or x ∈ L2}
L1∩L2 = {x | x ∈ L1 and x ∈ L2}
L1−L2 = {x | x ∈ L1 and x /∈ L2}

There are also some special operations which apply only to languages. The con-
catenation of L1 and L2, denoted by L1L2, is the set

L1L2 =
{

x1x2 | x1 ∈ L1 and x2 ∈ L2
}

Note that L{ε}= {ε}L = L. For n≥ 0, the nth power of L, denoted by Ln, is recur-
sively defined as

PREPRIN
T

2.3 Grammars and Language Families 9

(1) L0 = {ε}
(2) Ln = Ln−1L

The closure (Kleene star) of a language L, denoted by L∗, is the set

L∗ =
⋃
i≥0

Li

The positive closure of a language L, denoted by L+, is the set

L+ =
⋃
i≥1

Li

Let Σ and Γ be two alphabets. A total function σ from Σ∗ to 2Γ ∗ such that σ(uv) =
σ(u)σ(v), for every u,v ∈ Σ∗, is a substitution. By this definition, σ(ε) = {ε} and
σ(a1a2 · · ·an) =σ(a1)σ(a2) · · ·σ(an), where n≥ 1 and ai ∈Σ , for all i= 1,2, . . . ,n,
so σ is completely specified by defining σ(a) for each a ∈ Σ . If σ(a) is finite, for
every a ∈ Σ , then σ is said to be finite. For L⊆ Σ∗, we extend the definition of σ to

σ(L) =
⋃

w∈L

σ(w)

A total function ϕ from Σ∗ to Γ ∗ such that ϕ(uv) = ϕ(u)ϕ(v), for every u,v ∈ Σ∗,
is a homomorphism. As any homomorphism is a special case of finite substitution,
we specify ϕ by analogy with the specification of σ . For L ⊆ Σ∗, we extend the
definition of ϕ to

ϕ(L) =
{

ϕ(w) | w ∈ L
}

By analogy with set theory, sets whose members are languages are called families
of languages. If some language models define the same language family L , we
say that they are equivalent or, synonymously, equally powerful. Regarding L , we
say that these models characterize or define L . For instance, in the next section,
we review phrase-structure grammars that characterize the family of recursively
enumerable languages.

2.3 Grammars and Language Families

In this section, we define devices that generate languages. These devices are called
grammars, and they play a major role in formal language theory.

Definition 2.3.1. A phrase-structure grammar is a quadruple

G =
(
N,T,P,S

)
where

PREPRIN
T

2.3 Grammars and Language Families 10

• N is an alphabet of nonterminals;
• T is an alphabet of terminals such that N∩T = /0;
• P is a finite relation from (N∪T)∗N(N∪T)∗ to (N∪T)∗;
• S ∈ N is the start symbol.

Pairs (u,v) ∈ P are called rewriting rules (abbreviated rules) and are written as
u→ v. The set V = N ∪T is the total alphabet of G. A rewriting rule u→ v ∈ P
satisfying v = ε is called an erasing rule. If there is no such rule in P, then we say
that G is propagating.

The G-based direct derivation relation over V ∗ is denoted by⇒G and defined as

x⇒G y

if and only if x = x1ux2,y = y1vy2, and u→ v ∈ P, where x1,x2,y1,y2 ∈V ∗.
Since⇒G is a relation,⇒k

G is the kth power of⇒G, for k≥ 0,⇒+
G is the transitive

closure of ⇒G, and ⇒∗G is the reflexive-transitive closure of ⇒G. Let D : S⇒∗G x
be a derivation, for some x ∈V ∗. Then, x is a sentential form. If x ∈ T ∗, then x is a
sentence. If x is a sentence, then D is a successful (or terminal) derivation.

The language of G, denoted by L(G), is the set of all sentences defined as

L(G) =
{

w ∈ T ∗ | S⇒∗G w
}

ut

For brevity, we sometimes denote a rule u→ v with a unique label r as r : u→ v,
and instead of u→ v∈ P, we simply write r ∈ P. When a derivation u⇒G v is made
according to rule r ∈ P, we sometimes write u⇒G v [r] to point this out.

In the literature, a phrase-structure grammar is also often defined with rules of the
form x→ y, where x ∈V+ and y∈V ∗ (see, for instance, [107]). Both definitions are
interchangeable in the sense that the grammars defined in these two ways generate
the same family of languages—the family of recursively enumerable languages.

Definition 2.3.2. A recursively enumerable language is a language generated by a
phrase-structure grammar. The family of recursively enumerable languages is de-
noted by RE. ut

Definition 2.3.3. A context-sensitive grammar is a phrase-structure grammar

G =
(
N,T,P,S

)
such that every u→ v in P is of the form

u = x1Ax2, v = x1yx2

where x1,x2 ∈ V ∗, A ∈ N, and y ∈ V+. A context-sensitive language is a lan-
guage generated by a context-sensitive grammar. The family of context-sensitive
languages is denoted by CS. ut

PREPRIN
T

2.3 Grammars and Language Families 11

Definition 2.3.4. A context-free grammar is a phrase-structure grammar

G =
(
N,T,P,S

)
such that every rule in P is of the form

A→ x

where A ∈ N and x ∈ V ∗. A context-free language is a language generated by a
context-free grammar. The family of context-free languages is denoted by CF. ut

Concerning the families of context-free, context-sensitive, and recursively enu-
merable languages, the next important theorem holds true.

Theorem 2.3.5 (Chomsky Hierarchy, see [6, 7]). CF⊂ CS⊂ RE

Next, we recall leftmost derivations in context-free grammars.

Definition 2.3.6. Let G = (N, T , P, S) be a context-free grammar. The relation of a
direct leftmost derivation, denoted by ⇒lm G, is defined as follows: if u∈ T ∗, v∈V ∗,
and r : A→ x ∈ P, then

uAv ⇒lm G uxv [r]

Let ⇒n
lm G and ⇒∗lm G denote the nth power of ⇒lm G, for some n≥ 0, and the transi-

tive closure of ⇒lm G, respectively. The language that G generates by using leftmost
derivations is denoted by L(G, ⇒lm) and defined as

L
(
G, ⇒lm

)
=
{

w ∈ T ∗ | S ⇒∗lm G w
}

ut

Without any loss of generality, in context-free grammars, we may consider only
leftmost derivations, which is formally stated in the following theorem.

Theorem 2.3.7 (see [69]). Let G be a context-free grammar. Then,

L
(
G, ⇒lm

)
= L
(
G
)

Normal Forms

Next, we review several normal forms of context-sensitive and phrase-structure
grammars, namely the Penttonen and Geffert normal forms.

Definition 2.3.8. Let G = (N, T , P, S) be a phrase-structure grammar. G is in the
Penttonen normal form (see [91]) if every rule in P is in one of the following four
forms

(i) AB→ AC (ii) A→ BC (iii) A→ a (iv) A→ ε

where A,B,C ∈ N, and a ∈ T . ut

PREPRIN
T

2.3 Grammars and Language Families 12

Theorem 2.3.9 (see [91]). For every phrase-structure grammar G, there is a phrase-
structure grammar G′ in the Penttonen normal form such that L(G′) = L(G).

Theorem 2.3.10 (see [91]). For every context-sensitive grammar G, there is a
context-sensitive grammar G′ in the Penttonen normal form such that L(G′)= L(G).

Observe that if G is a context-sensitive grammar in the Pentonnen normal form,
then none of its rules is of the form (iv), which is not context-sensitive.

The next normal form limits the number of nonterminals and non-context-
sensitive rules in phrase-structure grammars.

Definition 2.3.11. Let G be a phrase-structure grammar. G is in the Geffert normal
form (see [29]) if it is of the form

G =
(
{S,A,B,C,D},T,P∪{ABC→ ε},S

)
where P contains context-free rules of the following three forms

(i) S→ uSa (ii) S→ uSv (iii) S→ uv

with u ∈ {A, AB}∗, v ∈ {BC, C}∗, and a ∈ T . ut

Theorem 2.3.12 (see [29]). For every recursively enumerable language K, there
exists a phrase-structure grammar G in the Geffert normal form such that L(G)=K.
In addition, every successful derivation in G is of the form S⇒∗G w1w2w by rules
from P, where w1 ∈ {A,AB}∗, w2 ∈ {BC,C}∗, w ∈ T ∗, and w1w2w⇒∗G w is derived
by ABC→ ε .

In the remainder of the present chapter, we recall the definition of several other
types of grammars that are needed throughout this thesis.

Random Context Grammars

In essence, random context grammars (see Section 1.1 in [16]) regulate the lan-
guage generation process so they require the presence of some prescribed symbols
and, simultaneously, the absence of some others in the rewritten sentential forms.
More precisely, random context grammars are based upon context-free rules, each
of which may be extended by finitely many permitting and forbidding nonterminal
symbols. A rule like this can rewrite the current sentential form provided that all its
permitting symbols occur in the sentential form while all its forbidding symbols do
not occur there.

PREPRIN
T

2.3 Grammars and Language Families 13

Definition 2.3.13. A random context grammar is a quadruple

G =
(
N,T,P,S

)
where N and T are two disjoint alphabets, S ∈ N, and

P⊆ N×
(
N∪T

)∗×2N×2N

is a finite relation. Set V = N ∪ T . The components V , N, T , P, and S are called
the total alphabet, the alphabet of nonterminals, the alphabet of terminals, the set
of random context rules, and the start symbol, respectively. Each (A,x,U,W) ∈ P is
written as

(A→ x,U,W)

For (A→ x, U , W)∈P, U and W are called the permitting context and the forbidding
context, respectively. If (A→ x, U , W) ∈ P implies that |x| ≥ 1, then G is said to be
propagating.

If (A→ x, U , W) ∈ P implies that W = /0, then G is a permitting grammar. If
(A→ x, U , W)∈ P implies that U = /0, then G is a forbidding grammar. By analogy
with propagating random context grammars, we define a propagating permitting
grammar and a propagating forbidding grammar, respectively.

The direct derivation relation over V ∗ is denoted by⇒G and defined as follows.
Let u,v ∈V ∗ and (A→ x, U , W) ∈ P. Then,

uAv⇒G uxv

if and only if

(A→ x,U,W) ∈ P,U ⊆ alph(uAv), and W ∩ alph(uAv) = /0

Let ⇒n
G and ⇒∗G denote the nth power of ⇒G, for some n ≥ 0, and the reflexive-

transitive closure of⇒G, respectively.
The language of G is denoted by L(G) and defined as

L
(
G
)
=
{

w ∈ T ∗ | S⇒∗G w
}

ut
The families of languages defined by permitting grammars, forbidding grammars,

and random context grammars are denoted by Per, For, and RC, respectively. To
indicate that only propagating grammars are considered, we use the upper index−ε .
That is, Per−ε , For−ε , and RC−ε denote the families of languages defined by prop-
agating permitting grammars, propagating forbidding grammars, and propagating
random context grammars, respectively.

Theorem 2.3.14. CF⊂ Per−ε = Per⊂ RC−ε ⊂ CS⊂ RC = RE
Proof. CF ⊂ Per−ε ⊂ RC−ε follows from Theorem 2.7 in Chapter 3 of [99].
Per−ε = Per follows from Theorem 1 in [111]. RC−ε ⊂ CS ⊂ RC = RE follows
from Theorems 1.2.4, 1.2.5, and 1.4.5 in [16]. ut
Theorem 2.3.15 (see Theorem 16 in [77]). CF⊂ For−ε ⊆ For⊂ CS

PREPRIN
T

2.3 Grammars and Language Families 14

Selective Substitution Grammars

Selective substitution grammars (see [39, 40, 95]) use context-free-like rules that
have a terminal or a nonterminal on their left-hand sides. By using extremely sim-
ple languages, referred to as selectors, they specify symbols where one of them is
rewritten during a derivation step and, in addition, place some restrictions on the
context appearing before and after the rewritten symbol. Otherwise, they work by
analogy with context-free grammars.

Definition 2.3.16. A selective substitution grammar (an s-grammar for short) is a
quintuple

G =
(
V,T,P,S,K

)
where V is the total alphabet, T ⊆V is an alphabet of terminals,

P⊆V ×V ∗

is a finite relation called the set of rules, S ∈ V −T is the start symbol, and K is a
finite set of selectors of the form

X∗Y Z∗

where X ,Y,Z ⊆V ; in words, the barred symbols are said to be activated. If A→ x ∈
P implies that |x| ≥ 1, then G is said to be propagating.

The direct derivation relation over V ∗, symbolically denoted by⇒G, is defined
as follows:

uAv⇒G uxv

if and only if A→ x∈P and X∗Y Z∗ ∈K such that u∈X∗, A∈Y , and v∈ Z∗. Let⇒n
G

and ⇒∗G denote the nth power of ⇒G, for some n ≥ 0, and the reflexive-transitive
closure of⇒G, respectively.

The language of G is denoted by L(G) and defined as

L(G) =
{

w ∈ T ∗ | S⇒∗G w
}

ut

The families of languages generated by s-grammars and propagating s-grammars
are denoted by S and S−ε , respectively.

Scattered Context Grammars

The notion of a scattered context grammar G is based on sequences of context-free
rules, according to which G can simultaneously rewrite several nonterminals during
a single derivation step.

PREPRIN
T

2.3 Grammars and Language Families 15

Definition 2.3.17. A scattered context grammar (see [35, 73]) is a quadruple

G =
(
N,T,P,S

)
where N is an alphabet of nonterminals, T an alphabet of terminals (N ∩T = /0), P
is a finite set of rules of the form

(A1, . . . ,An)→ (x1, . . . ,xn)

where n≥ 1, Ai ∈N, and xi ∈ (N∪T)∗, for all i= 1,2, . . . ,n (each rule may have dif-
ferent n), and S∈N is the start symbol. Set V =N∪T to be the total alphabet. When
every (A1, . . . ,An)→ (x1, . . . ,xn)∈P satisfies that |xi| ≥ 1, for all i= 1,2, . . . ,n, then
G is said to be propagating.

The direct derivation relation over V ∗, symbolically denoted by⇒G, is defined
as follows:

u⇒G v

if and only if (A1, . . . ,An)→ (x1, . . . ,xn) ∈ P and

u = u1A1 . . .unAnun+1
v = u1x1 . . .unxnun+1

where ui ∈ V ∗, for all i = 1,2, . . . ,n+ 1. Let ⇒n
G and ⇒∗G denote the nth power

of⇒G, for some n≥ 0, and the reflexive-transitive closure of⇒G, respectively.
The language of G is denoted by L(G) and defined as

L(G) =
{

w ∈ T ∗ | S⇒∗G w
}

ut

The families of languages generated by scattered context grammars and propa-
gating scattered context grammars are denoted by SC and SC−ε , respectively.

Theorem 2.3.18 (see Theorems 3.20, 3.21 in [73]). CF⊂ SC−ε ⊆CS⊂ SC = RE

It is not known whether the inclusion SC−ε ⊆ CS is, in fact, an identity.

PREPRIN
T

Part II
One-Sided Random Context Grammars

This part forms the heart of the thesis. It introduces a new variant of random con-
text grammars, called one-sided random context grammars, and studies this variant
from many points of view. Generative power, reduction, normal forms, leftmost
derivations, generalized and parsing-related versions all belong between the studied
topics. The present part consists of seven chapters.

Chapter 3 defines one-sided random context grammars and their variants, like
one-sided permitting grammars and one-sided forbidding grammars, and illustrates
them by examples.

Chapter 4 establishes relations between families of languages defined by one-
sided random context grammars and some well-known language families. It, there-
fore, studies the generative power of these grammars.

Chapter 5 establishes four normal forms of one-sided random context grammars,
in which rules satisfy some prescribed properties or format.

Chapter 6 studies the descriptional complexity of one-sided random context
grammars. More specifically, it shows how to reduce the number of nonterminals
and rules in these grammars without affecting their generative power.

Chapter 7 introduces three types of leftmost derivation restrictions placed upon
one-sided random context grammars, and studies their effect to the generative power
of these grammars.

Chapter 8 introduces and investigates generalized versions of one-sided random
context grammars. More specifically, it studies one-sided forbidding grammars that
may forbid occurrences of strings rather than just occurrences of single symbols.

Chapter 9 closes this part by introducing and investigating parsing-related vari-
ants of one-sided random context grammars, which may be applied in practice.

PREPRIN
T

Chapter 3
Definitions and Examples

This three-section chapter defines one-sided random context grammars and their
variants, and illustrates them by examples. More specifically, Section 3.1 gives for-
mal definitions of these grammars, Section 3.2 illustrates them by several examples,
and Section 3.3 presents a denotation of language families generated by these gram-
mars.

3.1 Definitions

Without further ado, let us define one-sided random context grammars formally.

Definition 3.1.1. A one-sided random context grammar is a quintuple

G =
(
N,T,PL,PR,S

)
where N and T are two disjoint alphabets, S ∈ N, and

PL,PR ⊆ N×
(
N∪T

)∗×2N×2N

are two finite relations. Set V = N ∪T . The components V , N, T , PL, PR, and S are
called the total alphabet, the alphabet of nonterminals, the alphabet of terminals,
the set of left random context rules, the set of right random context rules, and the
start symbol, respectively. Each (A,x,U,W) ∈ PL∪PR is written as

(A→ x,U,W)

For (A→ x, U , W) ∈ PL, U and W are called the left permitting context and the left
forbidding context, respectively. For (A→ x, U , W) ∈ PR, U and W are called the
right permitting context and the right forbidding context, respectively. ut

When applying a left random context rule, the grammar checks the existence and
absence of its permitting and forbidding symbols, respectively, only in the prefix

17

PREPRIN
T

3.1 Definitions 18

to the left of the rewritten nonterminal in the current sentential form. Analogously,
when applying a right random context rule, it checks the existence and absence of
its permitting and forbidding symbols, respectively, only in the suffix to the right of
the rewritten nonterminal. The following definition states this formally.

Definition 3.1.2. Let G= (N, T , PL, PR, S) be a one-sided random context grammar.
The direct derivation relation over V ∗ is denoted by⇒G and defined as follows. Let
u,v ∈V ∗ and (A→ x, U , W) ∈ PL∪PR. Then,

uAv⇒G uxv

if and only if

(A→ x,U,W) ∈ PL,U ⊆ alph(u), and W ∩ alph(u) = /0

or
(A→ x,U,W) ∈ PR,U ⊆ alph(v), and W ∩ alph(v) = /0

Let ⇒n
G and ⇒∗G denote the nth power of ⇒G, for some n ≥ 0, and the reflexive-

transitive closure of⇒G, respectively. ut

The language generated by a one-sided random context grammar is defined as
usual—that is, it consists of strings over the terminal alphabet that can be generated
from the start symbol.

Definition 3.1.3. Let G= (N, T , PL, PR, S) be a one-sided random context grammar.
The language of G is denoted by L(G) and defined as

L
(
G
)
=
{

w ∈ T ∗ | S⇒∗G w
}

ut

Next, we define several special variants of one-sided random context grammars.

Definition 3.1.4. Let G= (N, T , PL, PR, S) be a one-sided random context grammar.
If (A→ x, U , W) ∈ PL∪PR implies that |x| ≥ 1, then G is a propagating one-sided
random context grammar. If (A→ x, U , W) ∈ PL∪PR implies that W = /0, then G
is a one-sided permitting grammar. If (A→ x, U , W) ∈ PL∪PR implies that U = /0,
then G is a one-sided forbidding grammar. By analogy with propagating one-sided
random context grammars, we define a propagating one-sided permitting grammar
and a propagating one-sided forbidding grammar, respectively. ut

Definition 3.1.5. Let G= (N, T , PL, PR, S) be a one-sided random context grammar.
If PR = /0, then G is a left random context grammar. If PR = /0 and (A→ x, U ,
W)∈PL implies that W = /0, then G is a left permitting grammar (see [10]). If PR = /0
and (A→ x, U , W) ∈ PL implies that U = /0, then G is a left forbidding grammar
(see [31]). Their propagating versions are defined analogously as the propagating
version of one-sided random context grammars. ut

PREPRIN
T

3.2 Examples 19

3.2 Examples

Next, we illustrate the above definitions by three examples.

Example 3.2.1. Consider the one-sided random context grammar

G =
(
{S,A,B, Ā, B̄},{a,b,c},PL,PR,S

)
where PL contains the following four rules

(S→ AB, /0, /0)
(B→ bB̄c,{Ā}, /0)

(B̄→ B,{A}, /0)
(B→ ε, /0,{A, Ā})

and PR contains the following three rules

(A→ aĀ,{B}, /0) (Ā→ A,{B̄}, /0) (A→ ε,{B}, /0)

It is rather easy to see that every derivation that generates a nonempty string
of L(G) is of the form

S⇒G AB
⇒G aĀB
⇒G aĀbB̄c
⇒G aAbB̄c
⇒G aAbBc
⇒∗G anAbnBcn

⇒G anbnBcn

⇒G anbncn

where n≥ 1. The empty string is generated by

S⇒G AB⇒G B⇒G ε

Based on the previous observations, we see that G generates the non-context-free
language {

anbncn | n≥ 0
}

ut

Example 3.2.2. Consider K = {anbmcm | 1 ≤ m ≤ n}. This non-context-free lan-
guage is generated by the one-sided permitting grammar

G =
(
{S,A,B,X ,Y},{a,b,c},PL, /0,S

)
with PL containing the following seven rules

PREPRIN
T

3.2 Examples 20

(S→ AX , /0, /0) (A→ a, /0, /0)
(A→ aB, /0, /0)
(B→ A, /0, /0)

(X → bc, /0, /0)
(X → bY c, {B}, /0)
(Y → X , {A}, /0)

Notice that G is, in fact, a propagating left permitting grammar. Observe that
(X → bY c, {B}, /0) is applicable if B, produced by (A→ aB, /0, /0), occurs to the
left of X in the current sentential form. Similarly, (Y → X , {A}, /0) is applicable if
A, produced by (B→ A, /0, /0), occurs to the left of Y in the current sentential form.
Consequently, it is rather easy to see that every derivation that generates w ∈ L(G)
is of the form1

S ⇒G AX
⇒∗G auAX
⇒G au+1BX
⇒G au+1BbY c
⇒G au+1AbY c
⇒∗G au+1+vAbY c
⇒G au+1+vAbXc

...
⇒∗G an−1Abm−1Xcm−1

⇒2
G anbmcm = w

where u,v≥ 0, 1≤ m≤ n. Hence, L(G) = K. ut

Example 3.2.3. Consider the one-sided forbidding grammar

G =
(
{S,A,B,A′,B′, Ā, B̄},{a,b,c},PL,PR,S

)
where PL contains the following five rules

(S→ AB, /0, /0) (B→ bB′c, /0,{A, Ā})
(B→ B̄, /0,{A,A′})

(B′→ B, /0,{A′})
(B̄→ ε, /0,{Ā})

and PR contains the following four rules

(A→ aA′, /0,{B′})
(A→ Ā, /0,{B′})

(A′→ A, /0,{B})
(Ā→ ε, /0,{B})

Notice that every derivation that generates a nonempty string of L(G) is of the
form

1 Notice that after X is rewritten to bc by (X → bc, /0, /0), more as can be generated by (A→ aB, /0,
/0). However, observe that this does not affect the generated language.

PREPRIN
T

3.3 Denotation of Language Families 21

S ⇒G AB
⇒G aA′B
⇒G aA′bB′c
⇒G aAbB′c
⇒G aAbBc
⇒∗G anAbnBcn

⇒G anĀbnBcn

⇒G anĀbnB̄cn

⇒G anbnB̄cn

⇒G anbncn

where n≥ 1. The empty string is generated by

S⇒G AB⇒G ĀB⇒G ĀB̄⇒G B̄⇒G ε

Based on the previous observations, we see that G generates the non-context-free
language {

anbncn | n≥ 0
}

ut

3.3 Denotation of Language Families

Throughout the rest of this thesis, the language families under discussion are de-
noted in the following way. ORC, OPer, and OFor denote the language families
generated by one-sided random context grammars, one-sided permitting grammars,
and one-sided forbidding grammars, respectively. LRC, LPer, and LFor denote
the language families generated by left random context grammars, left permitting
grammars, and left forbidding grammars, respectively.

The notation with the upper index −ε stands for the corresponding propagating
family. For example, ORC−ε denotes the family of languages generated by propa-
gating one-sided random context grammars.

PREPRIN
T

Chapter 4
Generative Power

In this chapter, we establish relations between the language families defined in the
previous chapter and some well-known language families from Chapter 2. Most
importantly, we show that one-sided random context grammars are equally power-
ful as random context grammars, and that propagating one-sided random context
grammars are more powerful than propagating random context grammars.

The present chapter consists of three sections. First, Section 4.1 studies the gener-
ative power of one-sided random context grammars. Then, Section 4.2 investigates
the power of one-sided forbidding grammars. Finally, Section 4.3 discusses one-
sided permitting grammars and their generative power.

4.1 One-Sided Random Context Grammars

First, we consider one-sided random context grammars and their propagating ver-
sions. We prove that ORC−ε = CS and ORC = RE.

Lemma 4.1.1. CS⊆ORC−ε

Proof. Let G = (N, T , P, S) be a context-sensitive grammar. Without any loss of
generality, making use of Theorem 2.3.10, we assume that G is in the Penttonen nor-
mal form. We next construct a propagating one-sided random context grammar H
such that L(H) = L(G). Set N̄ = {Ā | A∈N}, N̂ = {Â | A∈N}, and N′ = N∪ N̄∪ N̂.
Define H as

H =
(
N′,T,PL,PR,S

)
with PL and PR constructed as follows:

(1) for each A→ a ∈ P, where A ∈ N and a ∈ T , add (A→ a, /0, N′) to PL;
(2) for each A→ BC ∈ P, where A,B,C ∈ N, add (A→ BC, /0, N̄∪ N̂) to PL;
(3) for each AB→ AC ∈ P, where A,B,C ∈ N, add (B→C, {Â}, N) to PL;
(4) for each A ∈ N, add (A→ Ā, /0, N∪ N̂) and (A→ Â, /0, N∪ N̂) to PL;

22

PREPRIN
T

4.1 One-Sided Random Context Grammars 23

(5) for each A ∈ N, add (Ā→ A, /0, N̄∪ N̂) and (Â→ A, /0, N̄∪ N̂) to PR.

Before proving that L(H) = L(G), we give an insight into the construction. The
simulation of context-free rules of the form A→ BC, where A,B,C ∈ N, is per-
formed directly by rules introduced in (2). H simulates context-sensitive rules—
that is, rules of the form AB→ AC, where A,B,C ∈ N—as follows. H first rewrites
all nonterminals to the left of an occurrence of A to their barred versions by rules
from (4), starting from the leftmost nonterminal of the current sentential form. Then,
it rewrites A to Â by (A→ Â, /0, N ∪ N̂) from (4). After this, it rewrites B to C
by (B→C, {Â}, N) from (3). Finally, H rewrites Â back to A and all barred non-
terminals back to their corresponding original versions by rules from (5) in the
right-to-left way.

To prevent AAB⇒H AaB⇒H ÂaB⇒H AaC, rules simulating A→ a, where A ∈
A and a ∈ T , introduced in (1), can be used only if there are no nonterminals to
the left of A. Therefore, a terminal can never appear between two nonterminals.
Consequently, every sentential form generated by H is of the form x1x2, where
x1 ∈ T ∗ and x2 ∈ N′∗.

To prove that L(H) = L(G), we first prove three claims. The first claim shows
that every y ∈ L(G) can be generated by G in two stages; first, only nonterminals
are generated, and then, all nonterminals are rewritten to terminals. To prove that
L(G)⊆ L(H), it then suffices to show how H simulates these derivations of G.

Claim 1. Let y ∈ L(G). Then, there exists a derivation S⇒∗G x⇒∗G y, where x ∈ N+,
and during x⇒∗G y, G applies only rules of the form A→ a, A ∈ N, where a ∈ T .

Proof. Let y ∈ L(G). Since there are no rules in P with symbols from T on their
left-hand sides, we can always rearrange all the applications of the rules occurring
in S⇒∗G y so the claim holds. ut

The second claim shows how certain derivations of G are simulated by H. To-
gether with the previous claim, it is used to demonstrate that L(G) ⊆ L(H) later in
the proof.

Claim 2. If S⇒n
G x, where x ∈ N+, for some n≥ 0, then S⇒∗H x.

Proof. This claim is established by induction on n≥ 0.

Basis. Let n = 0. Then, for S⇒0
G S, there is S⇒0

H S, so the basis holds.

Induction Hypothesis. Suppose that there exists m≥ 0 such that the claim holds for
all derivations of length `, where 0≤ `≤ m.

Induction Step. Consider any derivation of the form

S⇒n+1
G w

PREPRIN
T

4.1 One-Sided Random Context Grammars 24

where w ∈ N+. Since n+1≥ 1, this derivation can be expressed as

S⇒n
G x⇒G w

for some x ∈ N+. By the induction hypothesis, S⇒∗H x.
Next, we consider all possible forms of x⇒G w, covered by the following two

cases—(i) and (ii).

(i) Let A→ BC ∈ P and x = x1Ax2, where A,B,C ∈ N, and x1,x2 ∈ N∗. Then,

x1Ax2⇒G x1BCx2

By (2), (A→ BC, /0, N̄∪ N̂) ∈ PL, so

x1Ax2⇒H x1BCx2

which completes the induction step for (i).
(ii) Let AB→ AC ∈ P and x = x1ABx2, where A,B,C ∈ N, and x1,x2 ∈ N∗. Then,

x1ABx2⇒G x1BCx2

Let x1 = X1X2 · · ·Xk, where Xi ∈ N, for all i, 1≤ i≤ k, k = |x1|. By (4), (Xi→ X̄i,
/0, N∪ N̂) ∈ PL, for all i, 1≤ i≤ k, so

X1X2 · · ·XkABx2⇒H X̄1X2 · · ·XkABx2
⇒H X̄1X̄2 · · ·XkABx2

...
⇒H X̄1X̄2 · · · X̄kABx2

Let x̄1 = X̄1X̄2 · · · X̄k. By (4), (A→ Â, /0, N∪ N̂) ∈ PL, so

x̄1ABx2⇒H x̄1ÂBx2

By (3), (B→C, {Â}, N) ∈ PL, so

x̄1ÂBx2⇒H x̄1ÂCx2

Finally, by (5), (Â→ A, /0, N̄ ∪ N̂),(X̄i→ Xi, /0, N̄ ∪ N̂) ∈ PR, for all i, 1 ≤ i ≤ k,
so

X̄1X̄2 · · · X̄kÂCx2⇒H X̄1X̄2 · · · X̄kACx2
⇒H X̄1X̄2 · · ·XkACx2

...
⇒H X̄1X2 · · ·XkACx2
⇒H X1X2 · · ·XkACx2

which completes the induction step for (ii).

PREPRIN
T

4.1 One-Sided Random Context Grammars 25

Observe that cases (i) and (ii) cover all possible forms of x⇒G w. Thus, Claim 2
holds. ut

Next, we prove how G simulates derivations of H. The following claim is used to
prove that L(H) ⊆ L(G) later in the proof. Set V = N ∪T and V ′ = N′∪T . Define
the homomorphism τ from V ′∗ to V ∗ as τ(Ā) = A, τ(Â) = A, and τ(A) = A, for all
A ∈ N, and τ(a) = a, for all a ∈ T .

Claim 3. If S⇒n
H x, where x ∈V ′+, for some n≥ 0, then S⇒∗G τ(x) and x is of the

form x′X1X2 · · ·Xh, where x′ ∈ T ∗ and Xi ∈ N′, for all i, 1 ≤ i ≤ h, for some h ≥ 0.
Furthermore, if X j ∈ N̂, for some j, 1≤ j≤ h, then Xk ∈ N̄, for all k, 1≤ k < j, and
Xl ∈ N, for all l, j < l ≤ h.

Proof. This claim is established by induction on n≥ 0.

Basis. Let n = 0. Then, for S⇒0
H S, there is S⇒0

G S, so the basis holds.

Induction Hypothesis. Suppose that there exists m≥ 0 such that the claim holds for
all derivations of length `, where 0≤ `≤ m.

Induction Step. Consider any derivation of the form

S⇒n+1
H w

where w ∈V ′+. Since n+1≥ 1, this derivation can be expressed as

S⇒n
H x⇒H w

for some x ∈ V ′+. By the induction hypothesis, S⇒∗G τ(x) and x is of the form
x′X1X2 · · ·Xh, where x′ ∈ T ∗ and Xi ∈ N′, for all i, 1 ≤ i ≤ h, for some h ≥ 0. Fur-
thermore, if X j ∈ N̂, for some j, 1 ≤ j ≤ h, then Xk ∈ N̄, for all k, 1 ≤ k < j, and
Xl ∈ N, for all l, j < l ≤ h.

Next, we consider all possible forms of x⇒H w, covered by the following four
cases—(i) through (iv). That is, we show how rules introduced to PL and PR in (1)
through (5) are simulated by G. The last case covers the simulation of rules from
both (4) and (5) because these rules are simulated in the same way.

(i) Let x′X1X2 · · ·Xh ⇒H x′aX2 · · ·Xh by (X1 → a, /0, N′) ∈ PL, introduced in (1)
from X1→ a ∈ P, where a ∈ T . Then,

x′τ(X1X2 · · ·Xh)⇒G x′τ(aX2 · · ·Xh)

which completes the induction step for (i).
(ii) Let x′X1X2 · · ·X j−1X jX j+1 · · ·Xh⇒H x′X1X2 · · ·X j−1BCX j+1 · · ·Xh by (X j → BC,

/0, N̄ ∪ N̂) ∈ PL, introduced in (2) from X j→ BC ∈ P, for some j, 1≤ j ≤ h, and
B,C ∈ N. Then,

x′τ(X1X2 · · ·X j−1X jX j+1 · · ·Xh)⇒G x′τ(X1X2 · · ·X j−1BCX j+1 · · ·Xh)

which completes the induction step for (ii).

PREPRIN
T

4.1 One-Sided Random Context Grammars 26

(iii) Let x′X1X2 · · ·X j−1X jX j+1 · · ·Xh⇒H x′X1X2 · · ·X j−1CX j+1 · · ·Xh by (X j→C,{Â},
N) ∈ PL, introduced in (3) from AX j → AC ∈ P, for some j, 2 ≤ j ≤ h, and
A,C ∈ N. By the induction hypothesis, X j−1 = Â. Therefore,

x′τ(X1X2 · · ·X j−1X jX j+1 · · ·Xh)⇒G x′τ(X1X2 · · ·X j−1CX j+1 · · ·Xh)

which completes the induction step for (iii).
(iv) Let x′X1X2 · · ·X j−1X jX j+1 · · ·Xh⇒H x′X1X2 · · ·X j−1X ′jX j+1 · · ·Xh by (X j→ X ′j, /0,

W) ∈ PL∪PR, introduced in (4) or (5), for some j, 1 ≤ j ≤ h, where X ′j depends
on the particular rule that was used. Then,

x′τ(X1X2 · · ·Xh)⇒0
G x′τ(X1X2 · · ·Xh)

which completes the induction step for (iv).

Observe that cases (i) through (iv) cover all possible forms of x⇒H w. Thus,
Claim 3 holds. ut

We next prove that L(H) = L(G). Let y ∈ L(G). Then, by Claim 1, there is S⇒∗G
x⇒∗G y such that x ∈ N+ and during x⇒∗G y, G uses only rules of the form A→ a,
where A ∈ N, a ∈ T . By Claim 2, S⇒∗H x. Let x = A1A2 · · ·Ak and y = a1a2 · · ·ak,
where Ai ∈ N, Ai→ ai ∈ P, ai ∈ T , for all i, 1≤ i≤ k, k = |x|. By (1), (Ai→ ai, /0,
N′) ∈ PL, for all i, 1≤ i≤ k, so

A1A2 · · ·Ak ⇒H a1A2 · · ·Ak
⇒H a1a2 · · ·Ak

...
⇒H a1a2 · · ·ak

Consequently, y ∈ L(G) implies that y ∈ L(H), so L(G)⊆ L(H).
Consider Claim 3 for x ∈ T+. Then, x ∈ L(H) implies that τ(x) = x ∈ L(G), so

L(H)⊆ L(G). Since L(G)⊆ L(H) and L(H)⊆ L(G), L(H)= L(G), so Lemma 4.1.1
holds. ut

Lemma 4.1.2. ORC−ε ⊆ CS

Proof. Since the length of sentential forms in derivations of propagating one-sided
random context grammars is nondecreasing, propagating one-sided random context
grammars can be simulated by context-sensitive grammars. A rigorous proof of this
lemma is left to the reader. ut

Theorem 4.1.3. ORC−ε = CS

Proof. This theorem follows from Lemmas 4.1.1 and 4.1.2. ut

PREPRIN
T

4.2 One-Sided Forbidding Grammars 27

Theorem 4.1.4. ORC = RE

Proof. The inclusion ORC⊆RE follows from Church’s thesis. RE⊆ORC can be
proved by analogy with the proof of Lemma 4.1.1. Observe that by Theorem 2.3.9,
G can additionally contain rules of the form A→ ε , where A ∈ N. We can simulate
these context-free rules in the same way we simulate A→ BC, where A,B,C ∈ N—
that is, for each A→ ε ∈ P, we introduce (A→ ε , /0, N̄∪ N̂) to PL. ut

4.2 One-Sided Forbidding Grammars

Next, we consider one-sided forbidding grammars. First, we prove that OFor = S
and OFor−ε = S−ε . Then, we show that one-sided forbidding grammars with the set
of left forbidding rules coinciding with the set of right forbidding rules characterize
only the family of context-free languages. This characterization also holds in terms
of left forbidding grammars. Indeed, it holds that LFor−ε = LFor = CF.

Lemma 4.2.1. For every s-grammar G, there is a one-sided forbidding grammar H
such that L(H) = L(G).

Proof. Let G = (V , T , P, S, K) be an s-grammar. We next construct a one-sided
forbidding grammar H such that L(H) = L(G). Set N = V −T , T̂ = {â | a ∈ T},
T1 = {〈a,1〉 | a ∈ T}, T2 = {〈a,2〉 | a ∈ T}, T12 = T1∪T2, and

M12 =
{
〈r,s, i〉 | r ∈ P,s = (X∗Y Z∗) ∈ K, i = 1,2

}
Without any loss of generality, we assume that N, T , T̂ , T1, T2, and M12 are pairwise
disjoint. Construct

H =
(
N′,T,PL,PR,S

)
as follows. Initially, set

N′ = N∪ T̂ ∪T12∪M12
PL = /0
PR = /0

Define the homomorphism τ from V ∗ to N′∗ as τ(A)=A, for all A∈N, and τ(a)= â,
for all a ∈ T . Define the function T from 2V to 2N′ as T (/0) = /0 and

T
(
{A1, . . . ,An}

)
=
{

τ(A1), . . . ,τ(An)
}

Perform (1) and (2), given next.

(1) For each s = (X∗Y Z∗) ∈ K and each A ∈ Y such that r = (A→ y) ∈ P,

(1.1) add (τ(A)→ 〈r,s,1〉, /0,N′−T (X)) to PL;

PREPRIN
T

4.2 One-Sided Forbidding Grammars 28

(1.2) add (〈r,s,1〉 → 〈r,s,2〉, /0,N′−T (Z)) to PR;
(1.3) add (〈r,s,2〉 → τ(y), /0,T12∪M12) to PL.

(2) For each a ∈ T ,

(2.1) add (â→ 〈a,1〉, /0,N′− T̂) to PL;
(2.2) add (〈a,1〉 → 〈a,2〉, /0,N′−T2) to PR;
(2.3) add (〈a,2〉 → a, /0,N′) to PL.

Before proving that L(H) = L(G), let us informally describe (1) and (2). Let
X∗Y Z∗ ∈ K and x1Ax2 ∈ V ∗, where x1,x2 ∈ V ∗ and A ∈ Y . Observe that x1 ∈ X∗ if
and only if (V−X)∩alph(x1) = /0, and x2 ∈ Z∗ if and only if (V−Z)∩alph(x2) = /0.
Therefore, to simulate the application of A→ y ∈ P in H, we first check the absence
of all symbols from V −X to the left of A, and then, we check the absence of all
symbols from V −Z to the right of A.

We need to guarantee the satisfaction of the following two conditions. First, we
need to make sure that only a single rule is simulated at a time. For this purpose,
we have the three-part construction of rules in (1). Examine it to see that when-
ever H tries to simultaneously simulate more than one rule of G, the derivation is
blocked. Second, as opposed to s-grammars, one-sided forbidding grammars can
neither rewrite terminals nor forbid their occurrence. To circumvent this restric-
tion, rules introduced in (1) rewrite and generate hatted terminals which act as non-
terminals. For example, a→ bDc ∈ P, where a,b,c ∈ T and D ∈ N, is simulated
by â→ b̂Dĉ in H.

Hatted terminals can be rewritten to terminals by rules introduced in (2). Observe
that this can be done only if there are no symbols from N′− T̂ present in the current
sentential form; otherwise, the derivation is blocked. Furthermore, observe that after
a rule from (2.1) is applied, no rule of G can be simulated anymore. Based on these
observations, we see that every successful derivation of a1a2 · · ·ah in H is of the
form

S⇒∗H â1â2 · · · âh⇒∗H a1a2 · · ·ah

and during S⇒∗H â1â2 · · · âh, no sentential form contains any symbols from T .
To establish the identity L(H) = L(G), we prove two claims. First, Claim 1

shows how derivations of G are simulated by H. Then, Claim 2 demonstrates the
converse—that is, it shows how derivations of H are simulated by G.

Claim 1. If S⇒n
G w⇒∗G z, where w ∈ V ∗ and z ∈ T ∗, for some n ≥ 0, then S⇒∗H

τ(w).

Proof. This claim is established by induction on n≥ 0.

Basis. For n = 0, this claim obviously holds.

Induction Hypothesis. Suppose that there exists n≥ 0 such that the claim holds for
all derivations of length `, where 0≤ `≤ n.

PREPRIN
T

4.2 One-Sided Forbidding Grammars 29

Induction Step. Consider any derivation of the form

S⇒n+1
G w⇒∗G z

where w ∈V ∗ and z ∈ T ∗. Since n+1≥ 1, this derivation can be expressed as

S⇒n
G x⇒G w⇒∗G z

for some x ∈ V+. Let x = x1Ax2 and w = x1yx2 so s = (X∗Y Z∗) ∈ K such that
x1 ∈ X∗, A ∈ Y , x2 ∈ Z∗, and r = (A→ y) ∈ P.

By the induction hypothesis, S⇒∗H τ(x). By (1),

(τ(A)→ 〈r,s,1〉, /0,N′−T (X)) ∈ PL
(〈r,s,1〉 → 〈r,s,2〉, /0,N′−T (Z)) ∈ PR
(〈r,s,2〉 → τ(y), /0,T12∪M12) ∈ PL

By the induction hypothesis and by x1Ax2 ⇒G x1yx2, τ(x) = τ(x1)τ(A)τ(x2),
(N′−T (X))∩ alph(τ(x1)) = /0, and (N′−T (Z))∩ alph(τ(x2)) = /0, so

τ(x1)τ(A)τ(x2)⇒H τ(x1)〈r,s,1〉τ(x2)
⇒H τ(x1)〈r,s,2〉τ(x2)
⇒H τ(x1)τ(y)τ(x2)

Since τ(w) = τ(x1)τ(y)τ(x2), the induction step is completed. ut

Set V ′=N′∪T . Define the homomorphism ψ from V ′∗ to V ∗ as ψ(A) = A, for all
A ∈ N, ψ(〈r,s,1〉) = ψ(〈r,s,2〉) = A, for all r = (A→ x) ∈ P and all s = (X∗Y Z∗) ∈
K, and ψ(〈a,1〉) = ψ(〈a,2〉) = ψ(â) = a, for all a ∈ T .

Claim 2. If S⇒n
H w⇒∗H z, where w ∈ V ′∗ and z ∈ T ∗, for some n ≥ 0, then S⇒∗G

ψ(w).

Proof. This claim is established by induction on n≥ 0.

Basis. For n = 0, this claim obviously holds.

Induction Hypothesis. Suppose that there exists n≥ 0 such that the claim holds for
all derivations of length `, where 0≤ `≤ n.

Induction Step. Consider any derivation of the form

S⇒n+1
H w⇒∗H z

where w ∈V ′∗ and z ∈ T ∗. Since n+1≥ 1, this derivation can be expressed as

S⇒n
H x⇒H w⇒∗H z

PREPRIN
T

4.2 One-Sided Forbidding Grammars 30

for some x ∈V ′+. By the induction hypothesis, S⇒∗G ψ(x). Observe that if x⇒H w
is derived by a rule introduced in (1.1), (1.2), or in (2), then the induction step fol-
lows directly from the induction hypothesis. Therefore, assume that x= x1〈r,s,2〉x2,
w = x1τ(y)x2, and (〈r,s,2〉 → τ(y), /0,T12∪M12) ∈ PL, introduced in (1.3) from s =
(X∗Y Z∗) ∈ K such that A ∈ Y and r = (A → y) ∈ P. Recall that (T12 ∪M12)∩
alph(x1) = /0 has to hold; otherwise, the rule is not applicable. Next, we argue that
ψ(x)⇒G ψ(w).

Observe that the two other rules from (1.1) and (1.2) have to be applied before
(〈r,s,2〉→ τ(y), /0,T12∪M12) is applicable. Therefore, S⇒∗H x has to be of the form

S⇒∗H v1τ(A)v2⇒H v1〈r,s,1〉v2⇒∗H x1〈r,s,2〉x2 = x

where v1,v2 ∈ V ′∗ and x1〈r,s,2〉x2 is the first sentential form in S⇒∗H x, where an
occurrence of 〈r,s,1〉 is rewritten to 〈r,s,2〉. We next argue, by contradiction, that
(i) v1 = x1 and (ii) v2 = x2. We then use (i) and (ii) to show that ψ(x)⇒G ψ(w).

(i) Assume that v1 6= x1. The only possible way this case could happen is that after

S⇒∗H v1τ(A)v2⇒H v1〈r,s,1〉v2

v1 is rewritten by a rule t. Since 〈r,s,1〉 occurs to the right of v1 and since it is gen-
erated by (τ(A)→ 〈r,s,1〉, /0,N′−T (X)) ∈ PL from (1.1), t is necessarily a rule
from (1.1) or (2.1). However, in either case, we cannot rewrite the compound non-
terminal generated by t because 〈r,s,1〉 is still present to the right of v1. Although
we can rewrite 〈r,s,1〉 to 〈r,s,2〉 by (〈r,s,1〉 → 〈r,s,2〉, /0,N′−T (Z)) ∈ PR, we
cannot rewrite 〈r,s,2〉 because of the generated nonterminal. This contradicts the
assumption that v1 6= x1. Therefore, v1 = x1.

(ii) Assume that v2 6= x2. The only possible way this case could happen is that after

S⇒∗H v1τ(A)v2⇒H v1〈r,s,1〉v2

v2 is rewritten by a rule t. Since 〈r,s,1〉 occurs to the left of v2, t is necessarily
a rule from (1.2) or (2.2). However, in either case, we cannot rewrite the com-
pound nonterminal generated by t because 〈r,s,1〉 is still present to the left of v2.
Furthermore, we cannot rewrite 〈r,s,1〉 by (〈r,s,1〉→ 〈r,s,2〉, /0,N′−T (Z))∈ PR
from (1.2) because of the generated nonterminal. This contradicts the assumption
that v2 6= x2. Therefore, v2 = x2.

In a similar way, alph(x)∩ T = /0 can be demonstrated. Consequently, (V ′ −
T (X))∩alph(x1) = /0 and (V ′−T (Z))∩alph(x2) = /0. Recall that X∗Y Z∗ ∈K, A∈
Y , and A→ y ∈ P. Since ψ(x) = ψ(x1〈r,s,2〉x2) = ψ(x1)Aψ(x2), alph(ψ(x1))⊆ X ,
A ∈ Y , and alph(ψ(x2)) ⊆ Z, we see that ψ(x)⇒G ψ(w), which completes the in-
duction step. ut

PREPRIN
T

4.2 One-Sided Forbidding Grammars 31

Next, we prove that L(H) = L(G). Consider Claim 1 for w ∈ T ∗. Then, S⇒∗G w
implies that S⇒∗H τ(w). Let τ(w) = â1â2 · · · âh, where h = |w| (the case when h = 0
means w = ε). By (2),

(âi→ 〈ai,1〉, /0,N′− T̂) ∈ PL
(〈ai,1〉 → 〈ai,2〉, /0,N′−T2) ∈ PR
(〈ai,2〉 → ai, /0,N′) ∈ PL

for all i, 1≤ i≤ h. Therefore,

â1 · · · âh−1âh⇒H â1 · · · âh−1〈ah,1〉
⇒H â1 · · · 〈ah−1,1〉〈ah,1〉

...
⇒H 〈a1,1〉 · · · 〈ah−1,1〉〈ah,1〉
⇒H 〈a1,1〉 · · · 〈ah−1,1〉〈ah,2〉
⇒H 〈a1,1〉 · · · 〈ah−1,2〉〈ah,2〉

...
⇒H 〈a1,2〉〈a2,2〉 · · · 〈ah,2〉
⇒H a1〈a2,2〉 · · · 〈ah,2〉
⇒H a1a2 · · · 〈ah,2〉

...
⇒H a1a2 · · ·ah

Hence, L(G) ⊆ L(H). Consider Claim 2 for w ∈ T ∗. Then, S⇒∗H w implies that
S⇒∗G ψ(w) = w, so L(H) ⊆ L(G). Consequently, L(H) = L(G), and the lemma
holds. ut

Lemma 4.2.2. For every one-sided forbidding grammar G, there is an s-grammar
H such that L(H) = L(G).

Proof. Let G = (N, T , PL, PR, S) be a one-sided forbidding grammar. We next con-
struct an s-grammar H such that L(H) = L(G). Set V = N∪T and

M =
{
〈r,L〉 | r = (A→ y, /0,F) ∈ PL

}
∪
{
〈r,R〉 | r = (A→ y, /0,F) ∈ PR

}
Without any loss of generality, we assume that V ∩M = /0. Construct

H =
(
V ′,T,P′,S,K

)
as follows. Initially, set V ′ =V ∪M, P′ = /0, and

K =
{

V ∗{A}V ∗ | A ∈ N
}

Perform (1) and (2), given next.

PREPRIN
T

4.2 One-Sided Forbidding Grammars 32

(1) For each r = (A→ y, /0, F) ∈ PL,

(1.1) add A→ 〈r,L〉 and 〈r,L〉 → y to P′;
(1.2) add (V −F)∗{〈r,L〉}V ∗ to K.

(2) For each r = (A→ y, /0, F) ∈ PR,

(2.1) add A→ 〈r,R〉 and 〈r,R〉 → y to P′;
(2.2) add V ∗{〈r,R〉}(V −F)∗ to K.

Before proving that L(H) = L(G), let us informally explain (1) and (2). Since a
rule r = (A→ y, /0, F) can be in both PL and PR and since there can be several rules
with A on their left-hand sides, we simulate the application of a single rule of G in
two steps. First, depending on whether r ∈ PL or r ∈ Pr, we rewrite an occurrence
of A to a special compound nonterminal 〈r,s〉, which encodes the simulated rule r
and the side on which we check the absence of forbidding symbols (s = L or s = R).
Then, we introduce a selector which checks the absence of all symbols from F to
the proper side of 〈r,s〉, depending on whether s = L or s = R.

To establish the identity L(H) = L(G), we prove two claims. First, Claim 1
shows how derivations of G are simulated by H. Then, Claim 2 demonstrates the
converse—that is, it shows how derivations of H are simulated by G.

Claim 1. If S⇒n
G w⇒∗G z, where w ∈V ∗ and z ∈ T ∗, for some n≥ 0, then S⇒∗H w.

Proof. This claim is established by induction on n≥ 0.

Basis. For n = 0, this claim obviously holds.

Induction Hypothesis. Suppose that there exists n≥ 0 such that the claim holds for
all derivations of length `, where 0≤ `≤ n.

Induction Step. Consider any derivation of the form

S⇒n+1
G w⇒∗G z

where w ∈V ∗ and z ∈ T ∗. Since n+1≥ 1, this derivation can be expressed as

S⇒n
G x⇒G w⇒∗G z

for some x ∈V+. By the induction hypothesis, S⇒∗H x.
Next, we consider all possible forms of x⇒G w, covered by the following two

cases—(i) and (ii).

(i) Application of (A→ y, /0, F) ∈ PL. Let x = x1Ax2, w = x1yx2, and r = (A→ y, /0,
F) ∈ PL, so x⇒G w by r. This implies that alph(x1)∩F = /0. By the initializa-
tion part of the construction, V ∗{A}V ∗ ∈ K, and by (1.1), A→ 〈r,L〉 ∈ P′. Since
alph(x1)⊆V and alph(x2)⊆V ,

PREPRIN
T

4.2 One-Sided Forbidding Grammars 33

x1Ax2⇒H x1〈r,L〉x2

By (1.2), (V −F)∗{〈r,L〉}V ∗ ∈ K, and by (1.1), 〈r,L〉 → y ∈ P′. Since alph(x1)∩
F = /0,

x1〈r,L〉x2⇒H x1yx2

which completes the induction step for (i).
(ii) Application of (A→ y, /0, F) ∈ PR. Proceed by analogy with (i), but use rules

from (2) instead of rules from (1).

Observe that cases (i) and (ii) cover all possible forms of x⇒G w. Thus, the claim
holds. ut

Define the homomorphism ϕ from V ′∗ to V ∗ as ϕ(A) = A, for all A ∈ N,
ϕ(〈r,L〉) = A, for all r = (A→ x, /0, F) ∈ PL, ϕ(〈r,R〉) = A, for all r = (A→ x,
/0, F) ∈ PR, and ϕ(a) = a, for all a ∈ T .

Claim 2. If S⇒n
H w⇒∗H z, where w ∈ V ′∗ and z ∈ T ∗, for some n ≥ 0, then S⇒∗G

ϕ(w).

Proof. This claim is established by induction on n≥ 0.

Basis. For n = 0, this claim obviously holds.

Induction Hypothesis. Suppose that there exists n≥ 0 such that the claim holds for
all derivations of length `, where 0≤ `≤ n.

Induction Step. Consider any derivation of the form

S⇒n+1
H w⇒∗H z

where w ∈V ′∗ and z ∈ T ∗. Since n+1≥ 1, this derivation can be expressed as

S⇒n
H x⇒H w⇒∗H z

for some x ∈ V ′+. By the induction hypothesis, S⇒∗G ϕ(x). Next, we consider all
possible forms of x⇒H w, covered by the following four cases—(i) through (iv).

(i) Application of A→〈r,L〉 ∈ P′, introduced in (1.1). Let x = x1Ax2, w = x1〈r,L〉x2,
so x⇒H w by A→ 〈r,L〉 ∈ P′, introduced in (1.1) from r = (A→ y, /0, F) ∈ PL.
Since ϕ(〈r,L〉) = A, the induction step for (i) follows directly from the induction
hypothesis.

(ii) Application of A→ 〈r,R〉 ∈ P′, introduced in (2.1). Proceed by analogy with (i).
(iii) Application of 〈r,L〉 → y ∈ P′, introduced in (1.1). Let x = x1〈r,L〉x2, w = x1yx2,

(V − F)∗{〈r,L〉}V ∗ ∈ K such that x1 ∈ (V − F)∗ and x2 ∈ V ∗, so x ⇒H w
by 〈r,L〉 → y ∈ P′, introduced in (1.1) from r = (A → y, /0, F) ∈ PL. Ob-
serve that x1 ∈ (V −F)∗ implies that ϕ(x1) = x1 and alph(x1)∩F = /0. Since
ϕ(x) = ϕ(x1〈r,L〉x2) = x1Aϕ(x2),

PREPRIN
T

4.2 One-Sided Forbidding Grammars 34

x1Aϕ(x2)⇒G x1yϕ(x2) by r

As ϕ(w) = ϕ(x1yx2) = x1yϕ(x2), the induction step is completed for (iii).
(iv) Application of 〈r,R〉 → y ∈ P′, introduced in (2.1). Proceed by analogy with (iii).

Observe that cases (i) through (iv) cover all possible forms of x⇒H w. Thus, the
claim holds. ut

Next, we prove that L(H) = L(G). Consider Claim 1 for w ∈ T ∗. Then, S⇒∗G w
implies that S⇒∗H w. Hence, L(G) ⊆ L(H). Consider Claim 2 for w ∈ T ∗. Then,
S⇒∗H w implies that S⇒∗G ϕ(w)=w, so L(H)⊆ L(G). Consequently, L(H)= L(G),
and the theorem holds. ut

Theorem 4.2.3. OFor = S

Proof. This theorem follows from Lemmas 4.2.1 and 4.2.2. ut

Theorem 4.2.4. OFor−ε = S−ε

Proof. Reconsider the proof of Lemma 4.2.1. Observe that if G is propagating, then
so is H. Hence, S−ε ⊆OFor−ε . Reconsider the proof of Lemma 4.2.2. Observe that
if G is propagating, then so is H. Hence, OFor−ε ⊆ S−ε , and the theorem holds. ut

We next turn our attention to one-sided forbidding grammars with the set of left
forbidding rules coinciding with the set of right forbidding rules. We prove that they
characterize the family of context-free languages.

Lemma 4.2.5. Let K be a context-free language. Then, there exists a one-sided for-
bidding grammar, G = (N, T , PL, PR, S), satisfying PL = PR and L(G) = K.

Proof. Let K be a context-free language. Then, there exists a context-free grammar,
H = (N, T , P, S), such that L(H) = K. Define the one-sided forbidding grammar

G =
(
N,T,P′,P′,S

)
where

P′ =
{
(A→ x, /0, /0) | A→ x ∈ P

}
Clearly, L(G) = L(H) = K, so the lemma holds. ut

Lemma 4.2.6. Let G = (N, T , PL, PR, S) be a one-sided forbidding grammar satis-
fying PL = PR. Then, L(G) is context-free.

Proof. Let G = (N, T , PL, PR, S) be a one-sided forbidding grammar satisfying
PL = PR. Define the context free grammar H = (N, T , P′, S) with

P′ =
{

A→ x | (A→ x, /0,F) ∈ PL
}

PREPRIN
T

4.2 One-Sided Forbidding Grammars 35

Observe that since PL = PR, in the construction of P′ above, it is sufficient to con-
sider just the rules from PL. As any successful derivation in G is also a successful
derivation in H, the inclusion L(G)⊆ L(H) holds. On the other hand, let w ∈ L(H)
be a string successfully generated by H. Then, there exists a successful leftmost
derivation of w in H (see Theorem 2.3.7). Observe that such a leftmost derivation
is also possible in G because the leftmost nonterminal can always be rewritten. In-
deed, P′ contains only rules originating from the rules in PL and all rules in PL are
applicable to the leftmost nonterminal. Thus, the other inclusion L(H)⊆ L(G) holds
as well, which completes the proof. ut

Theorem 4.2.7. A language K is context-free if and only if there is a one-sided
forbidding grammar, G = (N, T , PL, PR, S), satisfying K = L(G) and PL = PR.

Proof. This theorem follows from Lemmas 4.2.5 and 4.2.6. ut

Since erasing rules can be eliminated from any context-free grammar (see Theo-
rem 7.9 in [37]), we obtain the following corollary.

Corollary 4.2.8. Let G = (N, T , PL, PR, S) be a one-sided forbidding grammar sat-
isfying PL = PR. Then, there is a propagating one-sided forbidding grammar H such
that L(H) = L(G)−{ε}. ut

The family of context-free languages is also characterized by left forbidding
grammars.

Theorem 4.2.9 (see Corollary 2 in [31]). LFor−ε = LFor = CF

We conclude this section by several remarks closely related to the previous re-
sults. Recall that we have established an equivalence between one-sided forbidding
grammars and s-grammars. In [44], it is proved that special versions of s-grammars,
referred to as symmetric s-grammars, are equivalent to forbidding grammars. Re-
call that in a symmetric s-grammar, each selector is of the form X∗Y X∗, where X
and Y are alphabets. In a forbidding grammar, the absence of symbols is checked
in the entire sentential form. Based on the achieved results, we see that one-sided
forbidding grammars form a counterpart to s-grammars just like forbidding gram-
mars form a counterpart to symmetric s-grammars. As symmetric s-grammars are
just special versions of s-grammars, we see that one-sided forbidding grammars are
at least as powerful as forbidding grammars. This result can be also proved directly,
as demonstrated next.

Theorem 4.2.10. For⊆OFor

Proof. Let G = (N, T , P, S) be a forbidding grammar. Without any loss of general-
ity, we assume that (A→ w, /0, W) ∈ P implies that A /∈W (otherwise, such a rule

PREPRIN
T

4.2 One-Sided Forbidding Grammars 36

would not be applicable in G). We next construct a one-sided forbidding grammar H
such that L(H) = L(G). Set R = {〈r,1〉,〈r,2〉 | r ∈ P} and define H as

H =
(
N∪R,T,PL,PR,S

)
where PL and PR are constructed in the following way. Initially, set PL = /0 and PR =
/0. To complete the construction, apply the following three steps for each r = (A→ x,
/0, W) ∈ P

(1) add (A→ 〈r,1〉, /0, W ∪R) to PL;
(2) add (〈r,1〉 → 〈r,2〉, /0, W ∪R) to PR;
(3) add (〈r,2〉 → x, /0, R) to PL.

The simulation of every r = (A→ x, /0, W) ∈ P is done in three steps. First,
we check the absence of all forbidding symbols from W to the left of A by a rule
from (1). Then, we check the absence of all forbidding symbols from W to the right
of A by a rule from (2). By our assumption, A /∈W , so we do not have to check the
absence of A in the current sentential form. Finally, we rewrite 〈r,2〉 to x by a rule
from (3). In all these steps, we also check the absence of all nonterminals from R.
In this way, we guarantee that only a single rule is simulated at a time (if this is not
the case, then the derivation is blocked). Based on these observations, we see that
L(H) = L(G). ut

Observe that the construction in the proof of Theorem 4.2.10 does not introduce
any erasing rules. Hence, whenever G is propagating, so is H. This implies the
following result.

Theorem 4.2.11. For−ε ⊆OFor−ε ut

In [44], the question whether S−ε = CS is explicitly formulated (see open prob-
lem (5) in [44]). As S−ε = OFor−ε (see Theorem 4.2.4), we obtain a reformulation
of this longstanding open question.

Corollary 4.2.12. S−ε = CS if and only if OFor−ε = CS. ut

It is worth pointing out that it is not known whether s-grammars or one-sided
forbidding grammars characterize RE either. From Theorem 4.2.3, we obtain the
following corollary.

Corollary 4.2.13. S = RE if and only if OFor = RE. ut

Open Problem 4.2.14. What is the generative power of one-sided forbidding gram-
mars and s-grammars? Do they characterize RE? ut

PREPRIN
T

4.3 One-Sided Permitting Grammars 37

4.3 One-Sided Permitting Grammars

Finally, we consider one-sided permitting grammars and their generative power. We
prove that CF⊂OPer−ε ⊆ SC−ε .

Lemma 4.3.1. CF⊂OPer−ε ⊆OPer

Proof. Clearly, CF⊆OPer−ε ⊆OPer. The strictness of the first inclusion follows
from Example 3.2.2. ut

Lemma 4.3.2. OPer−ε ⊆ SC−ε

Proof. Let G = (N, T , PL, PR, S) be a propagating one-sided permitting grammar.
We next construct a propagating scattered context grammar H such that L(H) =
L(G). Define H as

H =
(
N,T,P′,S

)
with P′ constructed as follows:

(1) for each (A→ x, /0, /0) ∈ PL∪PR, add (A)→ (x) to P′;
(2) for each (A→ x, {X1, X2, . . . , Xn}, /0) ∈ PL and every permutation (i1, i2, . . . , in)

of (1,2, . . . ,n), where n≥ 1, extend P′ by adding

(Xi1,Xi2, . . . ,Xin ,A)→ (Xi1,Xi2, . . . ,Xin,x)

(3) for each (A→ x, {X1, X2, . . . , Xn}, /0) ∈ PR and every permutation (i1, i2, . . . , in)
of (1,2, . . . ,n), where n≥ 1, extend P′ by adding

(A,Xi1,Xi2 , . . . ,Xin)→ (x,Xi1,Xi2 , . . . ,Xin)

Rules with no permitting symbols are simulated by ordinary context-free-like
rules, introduced in (1). The presence of permitting symbols is checked by scattered
context rules, introduced in (2) and (3), which have every permitting symbol to
the left and to the right of the rewritten symbol, respectively. Because the exact
order of permitting symbols in a sentential form is irrelevant in one-sided permitting
grammars, we introduce every permutation of the all permitting symbols. Based on
these observations, we see that L(H) = L(G). ut

Theorem 4.3.3. CF⊂OPer−ε ⊆ SC−ε ⊆ CS = ORC−ε

Proof. By Lemma 4.3.1, CF ⊂ OPer−ε . By Lemma 4.3.2, OPer−ε ⊆ SC−ε . The
inclusion SC−ε ⊆CS follows from Theorem 2.3.18. Finally, CS = ORC−ε follows
from Theorem 4.1.3. ut

PREPRIN
T

4.3 One-Sided Permitting Grammars 38

Recall that the one-sided random context grammar from Example 3.2.2 is, in
fact, a propagating left permitting grammar. Since every left permitting grammar is
a special case of a one-sided permitting grammar, we obtain the following corollary
of Theorem 4.3.3.

Corollary 4.3.4. CF⊂ LPer−ε ⊆ SC−ε ⊆ CS = ORC−ε ut

In the conclusion of this chapter, we point out some consequences implied by the
results achieved above. Then, we formulate some open problem areas.

Corollary 4.3.5. RC−ε ⊂ORC−ε ⊂ RC = ORC

Proof. These inclusions follow from Theorems 4.1.3 and 4.1.4 in this chapter and
from Theorem 2.3.14. ut

Corollary 4.3.6. LFor−ε = LFor⊂ For−ε ⊆OFor−ε ⊆OFor

Proof. These inclusions follow from Theorems 4.2.10 and 4.2.9 in this chapter and
from Theorem 2.3.15. ut

The previous results give rise to the following four open problem areas.

Open Problem 4.3.7. Establish the relations between families Per−ε , LPer−ε , and
OPer−ε . What is the generative power of left random context grammars? ut

Open Problem 4.3.8. Recall that Per−ε = Per (see Theorem 2.3.14). Is it true that
OPer−ε = OPer? ut

Open Problem 4.3.9. Theorem 4.2.9 says that LFor−ε = LFor. Is it also true that
OFor−ε = OFor? ut

Open Problem 4.3.10. Does OPer−ε = ORC−ε hold? If so, then Theorem 4.3.3
would imply SC−ε = CS and, thereby, solve a longstanding open question. ut

PREPRIN
T

Chapter 5
Normal Forms

Formal language theory has always struggled to turn grammars into normal forms,
in which grammatical rules satisfy some prescribed properties or format because
they are easier to handle from a theoretical as well as practical standpoint. Concern-
ing context-free grammars, there exist two famous normal forms—the Chomsky
and Greibach normal forms (see [69]). In the former, every grammatical rule has
on its right-hand side either a terminal or two nonterminals. In the latter, every
grammatical rule has on its right-hand side a terminal followed by zero or more
nonterminals. Similarly, there exist normal forms for general grammars, such as the
Kuroda, Penttonen, and Geffert normal forms (see [46] and Section 2.3).

The present chapter establishes four normal forms for one-sided random context
grammars. The first of them has the set of left random context rules coinciding with
the set of right random context rules. The second normal form, in effect, consists in
demonstrating how to turn any one-sided random context grammar to an equivalent
one-sided random context grammar with the sets of left and right random context
rules being disjoint. The third normal form resembles the Chomsky normal form for
context-free grammars, mentioned above. In the fourth normal form, each rule has
its permitting or forbidding context empty.

This chapter is divided into Sections 5.1 through 5.4. Each section establishes
one of the above-mentioned normal forms of one-sided random context grammars.

5.1 First Normal Form

In the first normal form, the set of left random context rules coincides with the set
of right random context rules.

Theorem 5.1.1. Let G = (N, T , PL, PR, S) be a one-sided random context grammar.
Then, there is a one-sided random context grammar, H = (N′, T , P′L, P′R, S), such
that L(H) = L(G) and P′L = P′R.

39

PREPRIN
T

5.1 First Normal Form 40

Proof. Let G = (N, T , PL, PR, S) be a one-sided random context grammar, and let
S′,#,$ be three new symbols not in N ∪ T . Define the one-sided random context
grammar

H =
(
N∪{S′,#,$},T,P′,P′,S′

)
with P′ constructed in the following way. Initially, set

P′ =
{
(S′→ #S$, /0, /0),($→ ε,{#},N),(#→ ε, /0, /0)

}
Then, complete the construction by applying the following two steps

(1) for each (A→ w, U , W) ∈ PL, add (A→ w, U , W ∪{$}) to P′;
(2) for each (A→ w, U , W) ∈ PR, add (A→ w, U , W ∪{#}) to P′.

In H, the side on which the rules check the presence and absence of symbols
is not explicitly prescribed by their membership to a certain set of rules. Instead,
the two new symbols, $ and #, are used to force rules to check for their permitting
and forbidding symbols on a proper side. These two new symbols are introduced
by (S′→ #S$, /0, /0), which is used at the very beginning of every derivation. There-
fore, every sentential form of H has its symbols placed between these two end mark-
ers. If we want a rule to look to the left, we guarantee the absence of $; otherwise,
we guarantee the absence of #. At the end of a derivation, these two new symbols
are erased by ($→ ε , {#}, N) and (#→ ε , /0, /0). The former rule checks whether,
disregarding #, the only present symbols in the current sentential form are termi-
nals. Observe that if (#→ ε , /0, /0) is used prematurely, H cannot derive a sentence
because the presence of # is needed to erase $ by ($→ ε , {#}, N). Based on these
observations, we see that L(H) = L(G). Since H has effectively only a single set of
rules, the theorem holds. ut

Next, we show that Theorem 5.1.1 also holds if we restrict ourselves only to
propagating one-sided random context grammars.

Theorem 5.1.2. Let G = (N, T , PL, PR, S) be a propagating one-sided random con-
text grammar. Then, there is a propagating one-sided random context grammar,
H = (N′, T , P′L, P′R, S), such that L(H) = L(G) and P′L = P′R.

Proof. We prove this theorem by analogy with the proof of Theorem 5.1.1, but we
give the present proof in a greater detail. Since H has to be propagating, instead
of # and $ as end markers, we use boundary symbols appearing in sentential forms.
To this end, we keep the leftmost symbol marked by ` and the rightmost symbol
marked by .́ If there is only a single symbol in the current sentential form, we mark
it by .̌ At the end of every successful derivation, only terminals and two boundary
marked terminals are present. To produce a string of terminals, we unmark these
two marked terminals.

PREPRIN
T

5.1 First Normal Form 41

Let G = (N, T , PL, PR, S) be a propagating one-sided random context grammar.
Set V = N ∪T , V̀ = {X̀ | X ∈V}, V́ = {X́ | X ∈V}, and Ň = {Ǎ | A ∈ N}. Without
any loss of generality, assume that V , V̀ , V́ , and Ň are pairwise disjoint. Construct
the propagating one-sided random context grammar

H =
(
N′,T,P′,P′, Š

)
as follows. Initially, set N′ = N∪V̀ ∪V́ ∪ Ň and P′ = /0. To keep the rest of the con-
struction as readable as possible, we introduce several functions. Define the function
π̀ from 2N to 22N′

as π̀(/0) = { /0} and

π̀({A1,A2, . . . ,An}) = {{A1,A2, . . . ,An}} ∪
{{À1,A2, . . . ,An}} ∪
{{A1, À2, . . . ,An}} ∪

...
{{A1,A2, . . . , Àn}}

Define the function π́ from 2N to 22N′
as π́(/0) = { /0} and

π́({A1,A2, . . . ,An}) = {{A1,A2, . . . ,An}} ∪
{{Á1,A2, . . . ,An}} ∪
{{A1, Á2, . . . ,An}} ∪

...
{{A1,A2, . . . , Án}}

Define the function σ̀ from 2N to 2N′ as σ̀(W) =W ∪{Ỳ | Y ∈W}∪ V́ . Define the
function σ́ from 2N to 2N′ as σ́(W) =W ∪{Ý | Y ∈W}∪V̀ .

To complete the construction, apply the following ten steps.

(1) Simulation of unit rules when there is only a single symbol present in the current
sentential form.
For each (A→ B, /0, W) ∈ PL∪PR, where B ∈ N, add (Ǎ→ B̌, /0, /0) to P′.

(2) Simulation of rules generating a single terminal when there is only a single sym-
bol present in the current sentential form.
For each (A→ a, /0, W) ∈ PL∪PR, where a ∈ T , add (Ǎ→ a, /0, /0) to P′.

(3) Simulation of rules forking the only symbol in the current sentential form into
two or more symbols.
For each (A→ XwY , /0, W) ∈ PL∪PR, where X ,Y ∈V , w ∈V ∗, add (Ǎ→ X̀wÝ ,
/0, /0) to P′.

(4) Simulation of rules from PL rewriting the leftmost nonterminal.
For each (A→ Xw, /0, W) ∈ PL, where X ∈V , w ∈V ∗, add (À→ X̀w, /0, /0) to P′.

PREPRIN
T

5.1 First Normal Form 42

(5) Simulation of rules from PR rewriting the rightmost nonterminal.
For each (A→ wX , /0, W) ∈ PR, where X ∈V , w ∈V ∗, add (Á→ wX́ , /0, /0) to P′.

(6) Simulation of rules from PL rewriting the rightmost nonterminal.
For each (A→ wX , U , W) ∈ PL, where X ∈V , w ∈V ∗, and every U ′ ∈ π̀(U), add
(Á→ wX́ , U ′, σ̀(W)) to P′.

(7) Simulation of rules from PL rewriting a non-marked nonterminal.
For each (A→ w, U , W) ∈ PL, where w ∈V ∗, and every U ′ ∈ π̀(U), add (A→ w,
U ′, σ̀(W)) to P′.

(8) Simulation of rules from PR rewriting the leftmost nonterminal.
For each (A→ Xw, U , W) ∈ PR, where X ∈V , w ∈V ∗, and every U ′ ∈ π́(U), add
(À→ X̀w, U ′, σ́(W)) to P′.

(9) Simulation of rules from PR rewriting a non-marked nonterminal.
For each (A→ w, U , W) ∈ PR, where w ∈V ∗, and every U ′ ∈ π́(U), add (A→ w,
U ′, σ́(W)}) to P′.

(10) Unmark both boundary terminals if only terminals and marked terminals are
present.
For each a,c ∈ T , add (à→ a, /0, /0) and (ć→ c, {à}, N) to P′.

Observe (i) through (vi), given next.

(i) Let S = X1 ⇒G X2 ⇒G · · · ⇒G Xn ⇒G a be a derivation, where a ∈ T , Xi ∈ N,
for all i, 1 ≤ i ≤ n, for some n ≥ 1. Notice that every applied rule in such a
derivation in G has to have an empty permitting context; otherwise, it would not
be applicable. Then, there is

Š = X̌1⇒H X̌2⇒H · · · ⇒H X̌n⇒H a

by rules introduced in (1) and (2). Conversely, for every derivation in H by rules
from (1) and (2), there is a corresponding derivation in G.

(ii) Rules from PL used to rewrite the leftmost nonterminal of a sentential form and
rules from PR used to rewrite the rightmost nonterminal of a sentential form
have to have empty permitting contexts; otherwise, they would not be applica-
ble. Therefore, the assumption of empty permitting contexts in rules from PL and
PR in (1) through (5) is without any loss of generality. Also, for the same reason,
the resulting rules, introduced to P′, have empty forbidding contexts.

(iii) Excluding case (i), every sentential form of H that has one or more nontermi-
nals is bounded by marked symbols. If the leftmost marked symbol is unmarked
prematurely by a rule of the form (à→ a, /0, /0), introduced in (10), no sentence
can be obtained because the presence of a symbol marked by ` is needed to un-
mark the rightmost symbol marked by ´ by a rule of the form (ć→ c, {à}, N),
introduced in (10).

(iv) The simulation of a rewrite of a nonterminal that is not the leftmost nor the right-
most symbol in the current sentential form by a rule from PL is done by rules

PREPRIN
T

5.2 Second Normal Form 43

from (6) and (7). To force the check to the left, the absence of all symbols marked
by ´ is required. Analogously, by (8) and (9), the forced check to the right is done
by requiring the absence of all symbols marked by .̀ Because of the previous
observation, this simulation is correct.

(v) Let S⇒∗G w be a derivation in G, where w ∈ T+ such that |w| ≥ 2. Using the
corresponding rules introduced in steps (1) and (3) through (9) and then using
two rules from (10), it is possible to derive w in H.

(vi) Every derivation in H leading to a sentence containing more than one terminal is
of the form

Š⇒∗H Ǎ (by rules from (1))
⇒H X̀wÝ (by a rule from (3))
⇒∗H à1a2 · · ·an−1án (by rules from (4) through (9))
⇒H à1a2 · · ·an−1an (by (án→ an,{à1},N) from (10))
⇒H a1a2 · · ·an−1an (by (à1→ a1, /0, /0) from (10))

where A ∈ N, X ,Y ∈V , w ∈V ∗, ai ∈ T , for all i, 1≤ i≤ n, for some n≥ 2. Such
a derivation is also possible in G (of course, without marked symbols and the last
two applied rules).

Based on these observations, we see that L(H) = L(G). Since H has effectively
only a single set of rules, the theorem holds. ut

5.2 Second Normal Form

The second normal form represents a dual normal form to that in Theorems 5.1.1
and 5.1.2. Indeed, we show that every one-sided random context grammar can be
turned into an equivalent one-sided random context grammar with the sets of left
and right random context rules being disjoint.

Theorem 5.2.1. Let G = (N, T , PL, PR, S) be a one-sided random context grammar.
Then, there is a one-sided random context grammar, H = (N′, T , P′L, P′R, S), such
that L(H) = L(G) and P′L∩P′R = /0. Furthermore, if G is propagating, then so is H.

Proof. Let G= (N, T , PL, PR, S) be a one-sided random context grammar. Construct

H =
(
N′,T,P′L,P

′
R,S
)

where
N′ = N∪{L,R}
P′L = {(A→ x,U,W ∪{L}) | (A→ x,U,W) ∈ PL}
P′R = {(A→ x,U,W ∪{R}) | (A→ x,U,W) ∈ PR}

PREPRIN
T

5.3 Third Normal Form 44

Without any loss of generality, we assume that {L,R}∩(N∪T) = /0. Observe that
the new nonterminals L and R cannot appear in any sentential form. Therefore, it is
easy to see that L(H) = L(G). Furthermore, observe that if G is propagating, then
so is H. Since P′L∩P′R = /0, the theorem holds. ut

5.3 Third Normal Form

The third normal form represents an analogy of the well-known Chomsky normal
form for context-free grammars. However, since one-sided random context gram-
mars with erasing rules are more powerful than their propagating versions, we allow
the presence of erasing rules in the transformed grammar.

Theorem 5.3.1. Let G = (N, T , PL, PR, S) be a one-sided random context grammar.
Then, there is a one-sided random context grammar, H = (N′, T , P′L, P′R, S), such
that L(H) = L(G) and (A→ x,U,W) ∈ P′L ∪P′R implies that x ∈ N′N′ ∪ T ∪{ε}.
Furthermore, if G is propagating, then so is H.

Proof. Let G = (N, T , PL, PR, S) be a one-sided random context grammar. Set V =
N ∪T and T̄ = {ā | a ∈ T}. Define the homomorphism τ from V ∗ to (N ∪ T̄)∗ as
τ(A) = A for each A ∈ N, and τ(a) = ā for each a ∈ T . Let ` be the length of the
longest right-hand side of a rule from PL∪PR. Set

M =
{
〈y〉 | y ∈V+,2≤ |y| ≤ `−1

}
Without any loss of generality, we assume that V , T̄ , and M are pairwise disjoint.
Construct

H =
(
N′,T,P′L,P

′
R,S
)

as follows. Initially, set

N′ = N∪ T̄ ∪M
P′L = {(A→ x,U,W ∪M) | (A→ x,U,W) ∈ PL,x ∈ T ∪{ε}} ∪

{(A→ τ(x),U,W ∪M) | (A→ x,U,W) ∈ PL,x ∈VV} ∪
{(ā→ a, /0, /0) | a ∈ T}

P′R = {(A→ x,U,W ∪M) | (A→ x,U,W) ∈ PR,x ∈ T ∪{ε}} ∪
{(A→ τ(x),U,W ∪M) | (A→ x,U,W) ∈ PR,x ∈VV}

Perform (1) and (2), given next.

(1) For each (A→ X1X2 · · ·Xn,U,W) ∈ PL, where Xi ∈V for i = 1,2, . . . ,n, for some
n≥ 3,

• add (A→ 〈X1X2 · · ·Xn−1〉τ(Xn),U,W ∪M) to P′L;

PREPRIN
T

5.4 Fourth Normal Form 45

• add (〈X1X2 · · ·Xn−1〉 → 〈X1X2 · · ·Xn−2〉τ(Xn−1), /0,M) to P′L;
...

• add (〈X1X2〉 → τ(X1X2), /0,M) to P′L.

(2) For each (A→ X1X2 · · ·Xn,U,W) ∈ PR, where Xi ∈V for i = 1,2, . . . ,n, for some
n≥ 3,

• add (A→ 〈X1X2 · · ·Xn−1〉τ(Xn),U,W ∪M) to P′R;
• add (〈X1X2 · · ·Xn−1〉 → 〈X1X2 · · ·Xn−2〉τ(Xn−1), /0,M) to P′R;

...
• add (〈X1X2〉 → τ(X1X2), /0,M) to P′R.

To give an insight into the construction, notice that rules whose right-hand side
is either a terminal or the empty string are directly added to P′L and P′R in the ini-
tialization part of the construction. When the right-hand side of a rule has two sym-
bols, their homomorphic image (with respect to τ) is used, which results in the new
right-hand side being formed by two nonterminals, even if the original right-hand
side contained terminals. Barred nonterminals are rewritten to their corresponding
terminals by rules of the form (ā→ a, /0, /0), introduced in the initialization part of
the construction. Notice that their permitting and forbidding contexts can be empty.

Rules with more than two symbols on their right-hand side are simulated in
a several-step way by rules from (1) and (2). Compound nonterminals of the
form 〈X1X2 · · ·Xn〉, where each Xi is a symbol, are used to satisfy the required form
of every rule in P′L ∪P′R. Each rule from (1) and (2) forbids the presence of these
compound symbols to the left (or right) of the rewritten nonterminal to ensure a
proper simulation.

Based on these observations, we see that L(H) = L(G). Moreover, observe that if
G is propagating, then so is H. Since H is of the required form, the theorem holds.

ut

5.4 Fourth Normal Form

In the fourth normal form, every rule has its permitting or forbidding context empty.

Theorem 5.4.1. Let G = (N, T , PL, PR, S) be a one-sided random context gram-
mar. Then, there is a one-sided random context grammar, H = (N′, T , P′L, P′R, S),
such that L(H) = L(G) and (A→ x,U,W) ∈ P′L∪P′R implies that U = /0 or W = /0.
Furthermore, if G is propagating, then so is H.

Proof. Let G = (N, T , PL, PR, S) be a one-sided random context grammar. Set V =
N∪T and

PREPRIN
T

5.4 Fourth Normal Form 46

F =
{
〈r,d, i〉 | r = (A→ x,U,W) ∈ Pd,d ∈ {L,R}, i ∈ {1,2}

}
Without any loss of generality, we assume that F ∩V = /0. Construct

H =
(
N′,T,P′L,P

′
R,S
)

as follows. Initially, set N′ = N ∪F , P′L = /0, and P′R = /0. Perform (1) and (2), given
next.

(1) For each r = (A→ x,U,W) ∈ PL,

(1.1) add (A→ 〈r,L,1〉, /0,F) to P′R;
(1.2) add (〈r,L,1〉 → 〈r,L,2〉, /0,W ∪F) to P′L;
(1.3) add (〈r,L,2〉 → x,U, /0) to P′L.

(2) For each r = (A→ x,U,W) ∈ PR,

(2.1) add (A→ 〈r,R,1〉, /0,F) to P′L;
(2.2) add (〈r,R,1〉 → 〈r,R,2〉, /0,W ∪F) to P′R;
(2.3) add (〈r,R,2〉 → x,U, /0) to P′R.

To give an insight into the construction, notice that a single rule from PL and PR
is simulated in three steps by rules introduced in (1) and (2), respectively. As we
cannot check both the presence and absence of symbols in a single step, we split
this check into two consecutive steps. Clearly, L(G)⊆ L(H), so we only prove that
L(H)⊆ L(G).

Observe that if we apply the three rules from (1) in H, then we can apply the
original rule in G. A similar application can be reformulated in terms of (2). There-
fore, it remains to be shown that H cannot generate improper sentences by invalid
intermixed simulations of more than one rule of G at a time. In what follows, we
consider only simulations of rules from PL; rules from PR are simulated analogously.

Let us consider a simulation of some r = (A→ x,U,W) ∈ PL. Observe that the
only situation where an improper simulation may occur is that after a rule from (1.2)
is applied, another simulation takes places which transforms a nonterminal to the
left of 〈r,L,2〉 that is not in U into a nonterminal that is in U . To investigate this
possibility, set V ′ = N′ ∪ T and consider any successful derivation in H, S⇒∗H z,
where z ∈ L(H). This derivation can be written in the form

S⇒∗H w⇒H y⇒∗H z

where w = w1〈r,L,1〉w2, y = w1〈r,L,2〉w2, and w1,w2 ∈ V ′∗. Since w ⇒H y by
(〈r,L,1〉 → 〈r,L,2〉, /0,W ∪F), introduced to P′L in (1.2) from r,

alph(w1)∩ (W ∪F) = /0

PREPRIN
T

5.4 Fourth Normal Form 47

From the presence of 〈r,L,2〉, no rule from (1) is now applicable to w1. Let
w1 = w′1Bw′′1 and (B→〈s,R,1〉, /0,F)∈ P′L, introduced in (2.1) from some s = (B→
v,X ,Y) ∈ PR such that B /∈U and

alph(v)∩
(
U− alph(w1)

)
6= /0

This last requirement implies that by successfully simulating s prior to r, we neces-
sarily end up with an invalid simulation of r. Then,

w′1Bw′′1〈r,L,2〉w2⇒H w′1〈s,R,1〉w′′1〈r,L,2〉w2

Since 〈s,R,1〉 cannot be rewritten to 〈s,R,2〉 by a rule from (2.2) because 〈r,L,2〉
occurs to the right of 〈s,R,1〉, we can either

(a) correctly finish the simulation of r by rewriting 〈r,L,2〉 to x (recall that B /∈U) or
(b) rewrite some nonterminal in w′1 or w′′1 .

However, observe that in (b), we end up in the same situation as we are now.
Based on these observations, we see that no invalid intermixed simulations of

more than one rule of G at a time are possible in H. Hence, L(H)⊆ L(G), so L(H) =
L(G). Clearly, (A→ x,U,W) ∈ P′L∪P′R implies that U = /0 or W = /0. Furthermore,
observe that if G is propagating, then so is H. Thus, the theorem holds. ut

We conclude this section by suggesting an open problem.

Open Problem 5.4.2. Let G = (N, T , PL, PR, S) be a one-sided random context
grammar, and consider the following four normal forms

(I) either PL = /0 or PR = /0;
(II) (A→ x,U,W) ∈ PL∪PR implies that card(U)+ card(W)≤ 1;

(III) PL = /0 and (A→ x,U,W) ∈ PR implies that W = /0;
(IV) PR = /0 and (A→ x,U,W) ∈ PL implies that W = /0.

Can we turn G into an equivalent one-sided random context grammar in any of the
above-mentioned forms? ut

PREPRIN
T

Chapter 6
Reduction

Recall that one-sided random context grammars characterize the family of recur-
sively enumerable languages (see Theorem 4.1.4). Of course, it is more than natural
to ask whether the family of recursively enumerable languages is characterized by
one-sided random context grammars with a limited number of nonterminals or rules.
The present chapter, consisting of three sections, gives an affirmative answer to this
question.

More specifically, in Section 6.1, we prove that every recursively enumerable lan-
guage can be generated by a one-sided random context grammar with no more than
ten nonterminals. In addition, we show that an analogous result holds for thirteen
nonterminals in terms of these grammars with the set of left random context rules
coinciding with the set of right random context rules.

Then, in Section 6.2, we approach the discussion concerning the reduction of
these grammars with respect to the number of nonterminals in a finer way. In-
deed, we introduce the notion of a right random context nonterminal, defined as
a nonterminal that appears on the left-hand side of a right random context rule,
and demonstrate how to convert any one-sided random context grammar G to an
equivalent one-sided random context grammar H with two right random context
nonterminals. We also explain how to achieve an analogous conversion in terms
of propagating versions of these grammars (recall that they characterize the family
of context-sensitive languages, see Theorem 4.1.3). Similarly, we introduce the no-
tion of a left random context nonterminal and show how to convert any one-sided
random context grammar G to an equivalent one-sided random context grammar H
with two left random context nonterminals. We explain how to achieve an analogous
conversion in terms of propagating versions of these grammars, too.

Apart from reducing the number of nonterminals, we reduce the number of rules.
More specifically, in Section 6.3, we prove that any recursively enumerable lan-
guage can be generated by a one-sided random context grammar having no more
than two right random context rules. As a motivation behind limiting the number of
right random context rules in these grammars, consider left random context gram-

48

PREPRIN
T

6.1 Total Number of Nonterminals 49

mars, which are one-sided random context grammars with no right random context
rules (see Section 3). Recall that it is an open question whether these grammars are
equally powerful to one-sided random context grammars (see Open Problem 4.3.7).
To give an affirmative answer to this question, it is sufficient to show that in one-
sided random context grammars, no right random context rules are needed. From
this viewpoint, the above-mentioned result may fulfill a useful role during the solu-
tion of this problem in the future.

The results sketched above can be also seen as a contribution to the investiga-
tion concerning the descriptional complexity of formal models, which represents
an important trend in today’s formal language theory as demonstrated by several
recent studies (see [11, 13, 23–26, 36, 53, 55, 56, 59, 61, 62, 76, 90, 104]). As an
important part, this trend discusses the nonterminal complexity of grammars—an in-
vestigation area that is primarily interested in reducing the number of nonterminals
in grammars without affecting their power. So, the results mentioned above actu-
ally represent new knowledge concerning the descriptional complexity of one-sided
random context grammars.

6.1 Total Number of Nonterminals

In this section, we prove that every recursively enumerable language can be gener-
ated by a one-sided random context grammar H that satisfies one of conditions (I)
and (II), given next.

(I) H has ten nonterminals (Theorem 6.1.1).
(II) The set of left random context rules of H coincides with the set of right random

context rules, and H has thirteen nonterminals (Corollary 6.1.2).

Theorem 6.1.1. Let K be a recursively enumerable language. Then, there is a one-
sided random context grammar, H = (N, T , PL, PR, S), such that L(H) = K and
card(N) = 10.

Proof. Let K be a recursively enumerable language. Then, by Theorem 2.3.11, there
is a phrase-structure grammar in the Geffert normal form

G =
(
{S,A,B,C},T,P∪{ABC→ ε},S

)
satisfying L(G) = K. We next construct a one-sided random context grammar H
such that L(H) = L(G). Set N = {S, A, B, C}, V = N ∪T , and N′ = {S, A, B, C,
Ā, Â, B̄, B̂, C̃, #}. Without any loss of generality, we assume that ({Ā, Â, B̄, B̂, C̃,
#})∩V = /0. Construct

H =
(
N′,T,PL,PR,S

)

PREPRIN
T

6.1 Total Number of Nonterminals 50

in the following way. Initially, set PL = /0 and PR = /0. Perform the following seven
steps

(1) for each S→ uSa ∈ P, where u ∈ {A,AB}∗ and a ∈ T ,
add (S→ uS#a, /0, {Ā, B̄, Â, B̂, C̃, #}) to PL;

(2) for each S→ uSv ∈ P, where u ∈ {A,AB}∗ and v ∈ {BC,C}∗,
add (S→ uSv, /0, {Ā, B̄, Â, B̂, C̃, #}) to PL;

(3) for each S→ uv ∈ P, where u ∈ {A,AB}∗ and v ∈ {BC,C}∗,
add (S→ uv, /0, {Ā, B̄, Â, B̂, C̃, #}) to PL;

(4) add (A→ Ā, /0, N∪{Â, B̂, C̃, #}) to PL;
add (B→ B̄, /0, N∪{Â, B̂, C̃, #}) to PL;
add (A→ Â, /0, N∪{Â, B̂, C̃, #}) to PL;
add (B→ B̂, {Â}, N∪{B̂, C̃, #}) to PL;
add (C→ C̃, {Â, B̂}, N∪{C̃, #}) to PL;

(5) add (B̂→ ε , {C̃}, {S, Ā, B̄, Â, B̂}) to PR;
add (Â→ ε , {C̃}, {S, Ā, B̄, Â, B̂}) to PR;
add (C̃→ ε , /0, N∪{Â, B̂, C̃, #}) to PL;

(6) add (Ā→ A, /0, {S, Ā, B̄, Â, B̂, C̃}) to PR;
add (B̄→ B, /0, {S, Ā, B̄, Â, B̂, C̃}) to PR;

(7) add (#→ ε , /0, N′) to PL.

Before proving that L(H) = L(G), let us informally describe the purpose of rules
introduced in (1) through (7). H simulates the derivations of G that satisfy the form
described in Theorem 2.3.12. The context-free rules in P are simulated by rules
from (1) through (3). The context-sensitive rule ABC→ ε is simulated in a several-
step way. First, rules introduced in (4) are used to prepare the erasure of ABC. These
rules rewrite nonterminals from the left to the right. In this way, it is guaranteed that
whenever Â, B̂, and C̃ appear in a sentential form, then they form a substring of
the form ÂB̂C̃. Then, rules from (5) sequentially erase B̂, Â, and C̃. Finally, rules
from (6) convert barred nonterminals back to their non-barred versions to prepare
another simulation of ABC→ ε; this conversion is done from the right to the left.
For example, AABCBCab⇒G ABCab is simulated by H as follows:

AABCBC#a#b⇒H ĀABCBC#a#b
⇒H ĀÂBCBC#a#b
⇒H ĀÂB̂CBC#a#b
⇒H ĀÂB̂C̃BC#a#b
⇒H ĀÂC̃BC#a#b
⇒H ĀC̃BC#a#b
⇒H ĀBC#a#b
⇒H ABC#a#b

Symbol # is used to ensure that every sentential form of H is of the form w1w2,
where w1 ∈ (N′−{#})∗ and w2 ∈ (T ∪{#})∗. Since permitting and forbidding con-

PREPRIN
T

6.1 Total Number of Nonterminals 51

texts cannot contain terminals, a mixture of symbols from T and N in H could
produce a terminal string out of L(G). For example, observe that AaBC⇒∗H a by
rules from (4) and (5), but such a derivation does not exist in G. #s can be elimi-
nated by an application of rules from (7), provided that no nonterminals occur to
the left of # in the current sentential form. Consequently, all #s are erased at the end
of every successful derivation.

To establish the identity L(H) = L(G), we prove two claims. Claim 1 shows
how derivations of G are simulated by H. This claim is then used to prove that
L(G) ⊆ L(H). Set V ′ = N′ ∪ T . Define the homomorphism ϕ from V ∗ to V ′∗ as
ϕ(X) = X , for all X ∈ N, and ϕ(a) = #a, for all a ∈ T .

Claim 1. If S⇒n
G x⇒∗G z, where x∈V ∗ and z∈ T ∗, for some n≥ 0, then S⇒∗H ϕ(x).

Proof. This claim is established by induction on n≥ 0.

Basis. For n = 0, this claim is clear.

Induction Hypothesis. Suppose that there exists n≥ 0 such that the claim holds for
all derivations of length `, where 0≤ `≤ n.

Induction Step. Consider any derivation of the form

S⇒n+1
G w⇒∗G z

where w ∈V ∗ and z ∈ T ∗. Since n+1≥ 1, this derivation can be expressed as

S⇒n
G x⇒G w⇒∗G z

for some x ∈ V+. Without any loss of generality, we assume that x is of the form
x = x1x2x3x4, where x1 ∈ {A, AB}∗, x2 ∈ {S, ε}, x3 ∈ {BC, C}∗, and x4 ∈ T ∗ (see
Theorem 2.3.12 and [29]).

Next, we consider all possible forms of x⇒G w, covered by the following four
cases—(i) through (iv).

(i) Application of S→ uSa ∈ P. Let x = x1Sx3x4, w = x1uSax3x4, and S→ uSa ∈ P,
where x1, u ∈ {A, AB}∗, x3, v ∈ {BC, C}∗, x4 ∈ T ∗, and a ∈ T . Then, by the
induction hypothesis,

S⇒∗H ϕ(x1Sx3x4)

By (1), (S→ uS#a, /0, {Ā, B̄, Â, B̂, C̃, #}) ∈ PL. Since ϕ(x1Sx3x4) = x1Sϕ(x3x4)
and alph(x1)∩{Ā, B̄, Â, B̂, C̃, #}= /0,

x1Sϕ(x3x4)⇒H x1uS#aϕ(x3x4)

As ϕ(x1uSax3x4) = x1uS#aϕ(x3x4), the induction step is completed for (i).

PREPRIN
T

6.1 Total Number of Nonterminals 52

(ii) Application of S→ uSv ∈ P. Let x = x1Sx3x4, w = x1uSvx3x4, and S→ uSv ∈ P,
where x1, u∈ {A, AB}∗, x3, v∈ {BC, C}∗, and x4 ∈ T ∗. To complete the induction
step for (ii), proceed by analogy with (i), but use a rule from (2) instead of a rule
from (1).

(iii) Application of S→ uv∈P. Let x= x1Sx3x4, w= x1uvx3x4, and S→ uv∈P, where
x1, u ∈ {A, AB}∗, x3, v ∈ {BC, C}∗, and x4 ∈ T ∗. To complete the induction step
for (iii), proceed by analogy with (i), but use a rule from (3) instead of a rule
from (1).

(iv) Application of ABC→ ε . Let x = x1ABCx3x4, w = x1x3x4, where x1 ∈ {A, AB}∗,
x3 ∈ {BC, C}∗, and x4 ∈ T ∗, so x⇒G w by ABC→ ε . Then, by the induction
hypothesis,

S⇒∗H ϕ(x1ABCx3x4)

Let x1 =X1X2 · · ·Xk, where k= |x1| (the case when k= 0 means that x1 = ε). Since
ϕ(x1ABCx3x4) = x1ABCϕ(x3x4) and alph(x1)⊆ N, by rules introduced in (4),

X1X2 · · ·XkABCϕ(x3x4)⇒H X̄1X2 · · ·XkABCϕ(x3x4)
⇒H X̄1X̄2 · · ·XkABCϕ(x3x4)

...
⇒H X̄1X̄2 · · · X̄kABCϕ(x3x4)

⇒H X̄1X̄2 · · · X̄kÂBCϕ(x3x4)

⇒H X̄1X̄2 · · · X̄kÂB̂Cϕ(x3x4)

⇒H X̄1X̄2 · · · X̄kÂB̂C̃ϕ(x3x4)

Let x̄1 = X̄1X̄2 · · · X̄k. Since alph(ϕ(x3x4))∩{S, Ā, B̄, Â, B̂} = /0, by rules intro-
duced in (5),

x̄1ÂB̂C̃ϕ(x3x4)⇒H x̄1ÂC̃ϕ(x3x4)
⇒H x̄1C̃ϕ(x3x4)
⇒H x̄1ϕ(x3x4)

Finally, by rules from (6),

x̄1ϕ(x3x4)⇒H X̄1 · · · X̄k−1Xkϕ(x3x4)
⇒H X̄1 · · ·Xk−1Xkϕ(x3x4)

...
⇒H X1 · · ·Xk−1Xkϕ(x3x4)

Recall that x1 = X1 · · ·Xk−1Xk. Since ϕ(x1x3x4) = x1ϕ(x3x4), the induction step
is completed for (iv).

Observe that cases (i) through (iv) cover all possible forms of x⇒G w. Thus, the
claim holds. ut

PREPRIN
T

6.1 Total Number of Nonterminals 53

Claim 2 demonstrates how G simulates derivations of H. It is then used to prove
that L(H) ⊆ L(G). Define the homomorphism π from V ′∗ to V ∗ as π(X) = X , for
all X ∈ N, π(Ā) = π(Â) = A, π(B̄) = π(B̂) = B, π(C̃) =C, π(a) = a, for all a ∈ T ,
and π(#) = ε . Define the homomorphism τ from V ′∗ to V ∗ as τ(X) = π(X), for all
X ∈V ′−{Â, B̂, C̃}, and τ(Â) = τ(B̂) = τ(C̃) = ε .

Claim 2. Let S⇒n
H x⇒∗H z, where x ∈ V ′∗ and z ∈ T ∗, for some n ≥ 0. Then, x =

x1x2x3x4x5, where x1 ∈ {Ā, B̄}∗, x2 ∈ {A, B}∗, x3 ∈ {S, ÂBC, ÂB̂C, ÂB̂C̃, ÂC̃, C̃, ε},
x4 ∈ {B, C}∗, and x5 ∈ (T ∪{#})∗. Furthermore,

(a) if x3 ∈ {S, ε}, then S⇒∗G π(x);
(b) if x3 ∈ {ÂBC, ÂB̂C, ÂB̂C̃}, then x2 = ε and S⇒∗G π(x);
(c) if x3 ∈ {ÂC̃, C̃}, then x2 = ε and S⇒∗G τ(x).

Proof. This claim is established by induction on n≥ 0.

Basis. For n = 0, this claim is clear.

Induction Hypothesis. Suppose that there exists n≥ 0 such that the claim holds for
all derivations of length `, where 0≤ `≤ n.

Induction Step. Consider any derivation of the form

S⇒n+1
H w⇒∗H z

where w ∈V ′∗ and z ∈ T ∗. Since n+1≥ 1, this derivation can be expressed as

S⇒n
H x⇒H w⇒∗H z

for some x ∈V ′+. By the induction hypothesis, x = x1x2x3x4x5, where x1 ∈ {Ā, B̄}∗,
x2 ∈{A, B}∗, x3 ∈{S, ÂBC, ÂB̂C, ÂB̂C̃, ÂC̃, C̃, ε}, x4 ∈{B, C}∗, and x5 ∈ (T ∪{#})∗.
Furthermore, (a) through (c), stated in the claim, hold.

Next, we consider all possible forms of x⇒H w, covered by the following five
cases—(i) through (v).

(i) Application of a rule from (1). Let x3 = S, x1 = x4 = ε , and (S→ uS#a, /0, {Ā, B̄,
Â, B̂, C̃, #}) ∈ PL, introduced in (1), where u ∈ {A,AB}∗ and a ∈ T , so

x2Sx5⇒H x2uS#ax5

Observe that if x4 6= ε , then w⇒∗H z does not hold. Indeed, if x4 6= ε , then to
erase the nonterminals in x4, there have to be As in x2. However, the # symbol,
introduced between x2 and x4, blocks the applicability of (C→ C̃, {Â, B̂}, N∪{C̃,
#})∈ PL, introduced in (4), which is needed to erase the nonterminals in x4. Since
(#→ ε , /0, N′) ∈ PL, introduced in (7), requires that there are no nonterminals to
the left of #, the derivation cannot be successfully finished. Hence, x4 = ε . Since

PREPRIN
T

6.1 Total Number of Nonterminals 54

u ∈ {A, B}∗ and #a ∈ (T ∪{#})∗, x2uS#ax5 is of the required form. As x3 = S,
S⇒∗G π(x). Observe that π(x) = π(x2)Sπ(x5). By (1), S→ uSa ∈ P, so

π(x2)Sπ(x5)⇒G π(x2)uSaπ(x5)

Since π(x2)uSaπ(x5) = π(x2uS#ax5) and both ÂC̃ and C̃ are not substrings
of x2uS#ax5, the induction step is completed for (i).

(ii) Application of a rule from (2). Let x3 = S, x1 = ε , and (S→ uSv, /0, {Ā, B̄, Â, B̂,
C̃, #}) ∈ PL, introduced in (2), where u ∈ {A,AB}∗ and v ∈ {BC, C}∗, so

x2Sx4x5⇒H x2uSvx4x5

To complete the induction step for (ii), proceed by analogy with (i), but use S→
uSv ∈ P instead of S→ uSa ∈ P. Observe that x4 may be nonempty in this case.

(iii) Application of a rule from (3). Let x3 = S, x1 = ε , and (S→ uv, /0, {Ā, B̄, Â, B̂, C̃,
#}) ∈ PL, introduced in (3), where u ∈ {A,AB}∗ and v ∈ {BC, C}∗, so

x2Sx4x5⇒H x2uvx4x5

To complete the induction step for (iii), proceed by analogy with (i), but use
S→ uv ∈ P instead of S→ uSa ∈ P. Observe that x4 may be nonempty in this
case.

(iv) Application of a rule from (5). Let x3 ∈ {ÂB̂C̃, ÂC̃, C̃}. By the induction hypoth-
esis (more specifically, by (b) and (c)), x2 = ε . Then, there are three subcases,
depending on what x3 actually is.

(iv.i) Let x3 = ÂB̂C̃. Then, x1ÂB̂C̃x4x5 ⇒H x1ÂC̃x4x5 by (B̂ → ε , {C̃}, {S, Ā,
B̄, Â, B̂}) ∈ PR, introduced in (5). Observe that this is the only applica-
ble rule from (5). By the induction hypothesis, S ⇒∗G π(x). Since π(x) =
π(x1)ABCπ(x4x5),

π(x1)ABCπ(x4x5)⇒G π(x1)π(x4x5)

by ABC→ ε . As w = x1ÂC̃x4x5 is of the required form and π(x1)π(x4x5) =
τ(w), the induction step is completed for (iv.i).

(iv.ii) Let x3 = ÂC̃. Then, x1ÂC̃x4x5⇒H x1C̃x4x5 by (Â→ ε , {C̃}, {S, Ā, B̄, Â, B̂}) ∈
PR, introduced in (5). Observe that this is the only applicable rule from (5). By
the induction hypothesis, S⇒∗G τ(x). As w = x1C̃x4x5 is of the required form
and τ(x) = τ(w), the induction step is completed for (iv.ii).

(iv.iii) Let x3 = C̃. Then, x1C̃x4x5⇒H x1x4x5 by (C̃→ ε , /0, N ∪{Â, B̂, C̃, #}) ∈ PL,
introduced in (5). Observe that this is the only applicable rule from (5). By the
induction hypothesis, S⇒∗G τ(x). As w = x1x4x5 is of the required form and
τ(x) = τ(w), the induction step is completed for (iv.iii).

PREPRIN
T

6.2 Number of Left and Right Random Context Nonterminals 55

(v) Application of a rule from (4), (6), or (7). Let x⇒H w by a rule from (4), (6),
or (7). Observe that x3 /∈ {ÂC̃, C̃} has to hold; otherwise, none of these rules
is applicable. Indeed, if x3 ∈ {ÂC̃, C̃}, then x2 = ε by the induction hypothesis
(more specifically, by (c)), which implies that no rule from (4) is applicable.
Also, x3 ∈ {ÂC̃, C̃} would imply that no rule from (6) and (7) is applicable.
Therefore, S⇒∗G π(w) follows directly from the induction hypothesis (obviously,
π(w) = π(x), and since x3 /∈ {ÂC̃, C̃}, S⇒∗G π(x) by the induction hypothesis).
As w is clearly of the required form, the induction step is completed for (v).

Observe that cases (i) through (v) cover all possible forms of x⇒H w. Thus, the
claim holds. ut

We next prove that L(H) = L(G). Consider Claim 1 for x∈ T ∗. Then, S⇒∗H ϕ(x).
Let x = a1a2 · · ·ak, where k = |x| (the case when k = 0 means that x = ε), so ϕ(x) =
#a1#a2 · · ·#ak. By (7), (#→ ε , /0, N′) ∈ PL. Therefore,

#a1#a2 · · ·#ak ⇒H a1#a2 · · ·#ak
⇒H a1a2 · · ·#ak

...
⇒H a1a2 · · ·ak

Hence, x ∈ L(G) implies that x ∈ L(H), so L(G)⊆ L(H).
Consider Claim 2 for x ∈ T ∗. Then, S⇒∗G π(x). Since x ∈ T ∗, π(x) = x. Hence,

x ∈ L(H) implies that x ∈ L(G), so L(H)⊆ L(G).
The two inclusions, L(G) ⊆ L(H) and L(H) ⊆ L(G), imply that L(H) = L(G).

As card(N′) = 10, the theorem holds. ut

Let G = (N, T , PL, PR, S) be a one-sided random context grammar. Recall that in
the proof of Theorem 5.1.1, a construction of a one-sided random context grammar,
H = (N′, T , P′L, P′R, S′), satisfying L(H) = L(G) and P′L = P′R, is given. Observe that
this construction introduces three new nonterminals—that is, card(N′) = card(N)+
3. Therefore, we obtain the following corollary.

Corollary 6.1.2. Let K be a recursively enumerable language. Then, there is a one-
sided random context grammar, H = (N, T , PL, PR, S), such that L(H) =K, PL = PR,
and card(N) = 13. ut

6.2 Number of Left and Right Random Context Nonterminals

In this section, we approach the discussion concerning the reduction of one-sided
random context grammars with respect to the number of nonterminals in a finer

PREPRIN
T

6.2 Number of Left and Right Random Context Nonterminals 56

way. Indeed, we introduce the notion of a right random context nonterminal, de-
fined as a nonterminal that appears on the left-hand side of a right random context
rule, and demonstrate how to convert any one-sided random context grammar G to
an equivalent one-sided random context grammar H with two right random context
nonterminals. We also explain how to achieve an analogous conversion in terms
of propagating versions of these grammars (recall that they characterize the family
of context-sensitive languages, see Theorem 4.1.3). Similarly, we introduce the no-
tion of a left random context nonterminal and show how to convert any one-sided
random context grammar G to an equivalent one-sided random context grammar H
with two left random context nonterminals. We explain how to achieve an analogous
conversion in terms of propagating versions of these grammars, too.

First, we define these two new measures formally.

Definition 6.2.1. Let G= (N, T , PL, PR, S) be a one-sided random context grammar.
If (A→ x, U , W) ∈ PR, then A is a right random context nonterminal. The number
of right random context nonterminals of G is denoted by nrrcn(G) and defined as

nrrcn(G) = card
(
{A | (A→ x,U,W) ∈ PR}

)
ut

Left random context nonterminals and their number in a one-sided random con-
text grammar are defined analogously.

Definition 6.2.2. Let G= (N, T , PL, PR, S) be a one-sided random context grammar.
If (A→ x, U , W) ∈ PL, then A is a left random context nonterminal. The number of
left random context nonterminals of G is denoted by nlrcn(G) and defined as

nlrcn(G) = card
(
{A | (A→ x,U,W) ∈ PL}

)
ut

Next, we prove that every recursively enumerable language can be generated
by a one-sided random context grammar H that satisfies one of conditions (I)
through (III), given next.

(I) H has four right random context nonterminals and six left random context non-
terminals (Corollary 6.2.3).

(II) H has two right random context nonterminals (Theorem 6.2.5).
(III) H has two left random context nonterminals (Theorem 6.2.6).

In addition, we demonstrate that every context-sensitive language can be gener-
ated by a propagating one-sided random context grammar H with either two right
random context nonterminals (Theorem 6.2.8), or with two left random context non-
terminals (Theorem 6.2.9).

Observe that the construction in the proof of Theorem 6.1.1 implies the following
result concerning the number of left and right random context nonterminals.

PREPRIN
T

6.2 Number of Left and Right Random Context Nonterminals 57

Corollary 6.2.3. Let K be a recursively enumerable language. Then, there is a
one-sided random context grammar, H = (N, T , PL, PR, S), such that L(H) = K,
nrrcn(H) = 4, and nlrcn(H) = 6. ut

Considering only the number of right random context nonterminals, we can im-
prove the previous corollary as described in the following lemma.

Lemma 6.2.4. Let G be a one-sided random context grammar. Then, there is a one-
sided random context grammar H such that L(H) = L(G) and nrrcn(H) = 2.

Proof. Let G = (N, T , PL, PR, S) be a one-sided random context grammar. We
next construct a one-sided random context grammar H such that L(H) = L(G) and
nrrcn(H) = 2. Set V = N∪T ,

R =
{
〈r, i〉 | r ∈ PR, i = 1,2

}
and

$R =
{
〈$,r, i〉 | r ∈ PR, i = 1,2

}
Without any loss of generality, we assume that R, $R, {S′, #1, #2, $}, and V are
pairwise disjoint. Construct

H =
(
N′,T,P′L,P

′
R,S
′)

as follows. Initially, set N′ = N ∪R∪ $R∪{#1, #2, $, S′}, P′L = /0, and P′R = /0. Fur-
thermore, set N̄ = N′−N. Perform (1) through (3), given next.

(1) Add (S′→ S$, /0, /0) and ($→ ε , /0, N′) to P′L.
(2) For each (A→ y, U , W) ∈ PL, add (A→ y, U , W ∪ N̄) to P′L.
(3) For each r = (A→ y, U , W) ∈ PR,

(3.1) add (A→ 〈r, 1〉, /0, N̄) to P′L;
(3.2) add ($→ 〈$, r, 1〉, {〈r, 1〉}, N̄−{〈r, 1〉}) to P′L;
(3.3) add (〈r, 1〉 → #1, /0, N̄) to P′L;
(3.4) add (#1→ 〈r, 2〉, {〈$, r, 1〉}, N̄−{〈$, r, 1〉}) to P′R;
(3.5) add (〈$, r, 1〉 → 〈$, r, 2〉, {〈r, 2〉}, N̄−{〈r, 2〉}) to P′L;
(3.6) add (〈r, 2〉 → #2, /0, N̄) to P′L;
(3.7) add (#2→ y, U ∪{〈$, r, 2〉}, W ∪ (N̄−{〈$, r, 2〉})) to P′R;
(3.8) add (〈$, r, 2〉 → $, /0, N̄) to P′L.

Before proving that L(H) = L(G), let us informally describe the purpose of rules
introduced in (1) through (3). The two rules from (1) are used to start and finish
every derivation in H. As we want to reduce the number of right random context
nonterminals, rules from PL are simulated directly by rules from (2). An applica-
tion of a single rule of G from PR, r = (A→ y, U , W) ∈ PR, is simulated by rules
introduced in (3) in an eight-step way.

PREPRIN
T

6.2 Number of Left and Right Random Context Nonterminals 58

During the simulation of applying r, the very last symbol in sentential forms of H
always encodes r for the following two reasons. First, as G can contain more than
two right random context nonterminals, whenever a nonterminal is rewritten to #1
or #2, we keep track regarding the rule that is being simulated. Second, it rules out
intermixed simulations of two different rules from PR, r = (A→ y, U , W) ∈ PR and
r′ = (A′→ y′, U ′, W ′) ∈ PR, where r 6= r′.

The only purpose of two versions of every compound nonterminal in angular
brackets and the symbols #1, #2 is to enforce rewriting 〈$, r, i〉 back to $ before
another rule from PR is simulated. In this way, we guarantee that no terminal string
out of L(G) is generated.

To establish the identity L(H) = L(G), we prove four claims. Claim 1 shows how
H simulates the application of rules from PL, and how G simulates the application
of rules constructed in (2).

Claim 1. In G, x1Ax2⇒G x1yx2 by (A→ y, U, W) ∈ PL, where x1, x2 ∈ V ∗, if and
only if in H, x1Ax2$⇒H x1yx2$ by (A→ y, U, W ∪ N̄) ∈ P′L, introduced in (2).

Proof. Notice that as x1 ∈V ∗, alph(x1)∩ N̄ = /0. Thus, this claim holds. ut

Claim 2 shows how H simulates the application of rules rules from PR, and how
G simulates the application of rules constructed in (3).

Claim 2. In G, x1Ax2⇒G x1yx2 by r = (A→ y, U, W) ∈ PR, where x1, x2 ∈ V ∗, if
and only if in H, x1Ax2$⇒8

H x1yx2$ by the eight rules introduced in (3) from r.

Proof. The proof is divided into the only-if part and the if part.

Only If. Let x1Ax2⇒G x1yx2 by r =(A→ y, U , W)∈PR, where x1, x2 ∈V ∗. By (3.1),
(A→ 〈r, 1〉, /0, N̄) ∈ P′L. As alph(x1)∩ N̄ = /0,

x1Ax2$⇒H x1〈r,1〉x2$

By (3.2), ($→ 〈$, r, 1〉, {〈r, 1〉}, N̄−{〈r, 1〉}) ∈ P′L. As 〈r, 1〉 ∈ alph(x1〈r, 1〉x2)
and alph(x1〈r, 1〉x2)∩ (N̄−{〈r, 1〉}) = /0,

x1〈r,1〉x2$⇒H x1〈r,1〉x2〈$,r,1〉

By (3.3), (〈r, 1〉 → #1, /0, N̄) ∈ P′L. As alph(x1)∩ N̄ = /0,

x1〈r,1〉x2〈$,r,1〉 ⇒H x1#1x2〈$,r,1〉

By (3.4), (#1→ 〈r, 2〉, {〈$, r, 1〉}, N̄−{〈$, r, 1〉}) ∈ P′R. As 〈$, r, 1〉 ∈ alph(x2〈$,
r, 1〉) and alph(x2〈$, r, 1〉)∩ (N̄−{〈$, r, 1〉}) = /0,

x1#1x2〈$,r,1〉 ⇒H x1〈r,2〉x2〈$,r,1〉

PREPRIN
T

6.2 Number of Left and Right Random Context Nonterminals 59

By (3.5), (〈$, r, 1〉→ 〈$, r, 2〉, {〈r, 2〉}, N̄−{〈r, 2〉})∈ P′L. As {〈r, 2〉} ∈ alph(x1〈r,
2〉x2) and alph(x1〈r, 2〉x2)∩ (N̄−{〈r, 2〉}) = /0,

x1〈r,2〉x2〈$,r,1〉 ⇒H x1〈r,2〉x2〈$,r,2〉

By (3.6), (〈r, 2〉 → #2, /0, N̄) ∈ P′L. As alph(x1)∩ N̄ = /0,

x1〈r,2〉x2〈$,r,2〉 ⇒H x1#2x2〈$,r,2〉

By (3.7), (#2 → y, U ∪ {〈$, r, 2〉}, W ∪ (N̄ −{〈$, r, 2〉})) ∈ P′R. As (U ∪ {〈$, r,
2〉})⊆ alph(x2〈$, r, 2〉) and alph(x2〈$, r, 2〉)∩ (W ∪ (N̄−{〈$, r, 2〉})) = /0,

x1#2x2〈$,r,2〉 ⇒H x1yx2〈$,r,2〉

Finally, by (3.8), (〈$, r, 2〉 → $, /0, N̄) ∈ P′L. As alph(x1yx2)∩ N̄ = /0,

x1yx2〈$,r,2〉 ⇒H x1yx2$

Hence, the only-if part of the claim holds.

If. Let x1Ax2$⇒8
H x1yx2$ by the eight rules introduced in (3) from some r = (A→ y,

U , W) ∈ PR. Observe that this eight-step derivation is of the following form

x1Ax2 ⇒H x1〈r,1〉x2
⇒H x1〈r,1〉x2〈r,1〉
⇒H x1#1x2〈r,1〉
⇒H x1〈r,2〉x2〈r,1〉
⇒H x1〈r,2〉x2〈r,2〉
⇒H x1#2x2〈r,2〉
⇒H x1yx2〈r,2〉
⇒H x1yx2

As x1#2x2〈$, r, 2〉 ⇒H x1yx2〈$, r, 2〉 by (#2→ y, U ∪{〈$, r, 2〉}, W ∪ (N̄−{〈$, r,
2〉})) ∈ P′R, introduced in (3.7) from r, U ⊆ alph(x2) and W ∩ alph(x2) = /0. There-
fore, by using r,

x1Ax2⇒G x1yx2

Hence, the if part of the claim holds. ut

Claim 3 shows that every x ∈ L(H) can be derived in H by a derivation satisfying
properties (i) through (iii), stated next. Set V ′ = N′∪T .

Claim 3. Let x ∈ V ′∗. Then, x ∈ L(H) if and only if S′⇒H S$⇒∗H x$⇒H x so that
during S$⇒∗H x$, (i) through (iii) hold:

(i) no rules from (1) are used;

PREPRIN
T

6.2 Number of Left and Right Random Context Nonterminals 60

(ii) every application of a rule from (3.1) is followed by applying the remaining seven
rules from (3.2) through (3.8) before another rule from (3.1) is applied;

(iii) whenever some A ∈ N is rewritten to 〈r, 1〉 by a rule from (3.1), constructed
from r = (A→ y, U, W) ∈ PR, 〈r, 1〉 cannot be rewritten to z with z 6= y.

Proof. The if part of the claim is trivial; therefore, we only prove the only-if part.
Let x ∈ L(H). We argue that (i) through (iii) hold.

(i) Observe that (S′→ S$, /0, /0) ∈ PL, introduced in (1), is the only rule with S′ on its
left-hand side. Therefore, this rule is used at the beginning of every derivation.
Furthermore, observe that no rule has S′ on its right-hand side. By (1), ($→ ε ,
/0, N′) ∈ P′L. Notice that this rule is applicable if and only if the current sentential
form is of the form x$, where x ∈ T ∗. Therefore, (i) holds.

(ii) Let x1〈r, 1〉x2$ be the first sentential form in S$⇒∗H x$ after a rule from (3.1) is
applied. Clearly, x1, x2 ∈ V ∗. Observe that after this application, the remaining
seven rules from (3.2) through (3.8) are applied before another rule from (3.1)
is applied. As rules from (3.1) rule out the presence of symbols from N̄, a rule
from (3.1) can be only applied to some nonterminal in x1. Then, however, no
terminal string can be obtained anymore. Furthermore, observe that during the
application of these seven rules, rules introduced in (2) can be applied to x1 at
any time without affecting the applicability of the seven rules to 〈r, 1〉x2$. Based
on these observations, we see that (ii) holds.

(iii) By (ii), once a rule from (3.1) is used, the remaining seven rules from (3.2)
through (3.8) are applied. Observe that when rules from (3.3) and (3.6) are ap-
plied, the last nonterminal of the current sentential form encodes the currently
simulated rule. Therefore, we cannot combine simulations of two different rules
from PR. Based on this observation, we see that (iii) holds.

Hence, the only-if part of the claim holds, so the claim holds. ut

Claim 4. In G, S⇒∗G x if and only if in H, S′⇒∗H x, where x ∈ T ∗.

Proof. This claim follows from Claims 1, 2, and 3. ut

Claim 4 implies that L(G) = L(H). Clearly, #1 and #2 are the only right random
context nonterminals in H, so nrrcn(H) = 2. Hence, the lemma holds. ut

Theorem 6.2.5. For every recursively enumerable language K, there exists a one-
sided random context grammar H such that L(H) = K and nrrcn(H) = 2.

Proof. This theorem follows from Theorem 4.1.4 and Lemma 6.2.4. ut

Theorem 6.2.6. For every recursively enumerable language K, there exists a one-
sided random context grammar H such that L(H) = K and nlrcn(H) = 2.

PREPRIN
T

6.2 Number of Left and Right Random Context Nonterminals 61

Proof. This theorem can be proved by analogy with the proofs of Theorem 6.2.5
and Lemma 6.2.4. ut

Next, we turn our attention to propagating one-sided random context grammars
and their nonterminal complexity.

Lemma 6.2.7. Let G be a propagating one-sided random context grammar. Then,
there is a propagating one-sided random context grammar H such that L(H)= L(G)
and nrrcn(H) = 2.

Proof. Let G = (N, T , PL, PR, S) be a propagating one-sided random context gram-
mar. We prove this lemma by analogy with the proof of Lemma 6.2.4. However,
since H has to be propagating, instead of using a special symbol $, which is erased
at the end of a successful derivation, we use the rightmost symbol of a senten-
tial form for this purpose. Therefore, if X is the rightmost symbol of the current
sentential form in G, we use 〈X〉 in H. By analogy with the construction given in
Lemma 6.2.4, we introduce new nonterminals, 〈X , r, 1〉 and 〈X , r, 2〉, for every
r ∈ PR and every X ∈ N ∪T , to keep track of the currently simulated rule r. At the
end of a derivation, X has to be a terminal, so instead of erasing 〈X〉, we rewrite it
to X , thus finishing the derivation.

We next construct a propagating one-sided random context grammar H such that
L(H) = L(G) and nrrcn(H) = 2. Set V = N∪T and

V̂ = {〈X〉 | X ∈V}
R = {〈r, i〉 | r ∈ PR, i = 1,2}

$R = {〈X ,r, i〉 | X ∈V,r ∈ PR, i = 1,2}

Without any loss of generality, we assume that V̂ , R, $R, {#1, #2}, and V are pairwise
disjoint. Construct

H =
(
N′,T,P′L,P

′
R,〈S〉

)
as follows. Initially, set N′ = N∪V̂ ∪R∪ $R∪{#1, #2}, P′L = /0, and P′R = /0. Further-
more, set N̄ = N′−N. Perform the following five steps

(1) for each a ∈ T , add (〈a〉 → a, /0, N′) to P′L;
(2) for each (A→ y, U , W) ∈ PL, add (A→ y, U , W ∪ N̄) to P′L;
(3) for each r = (A→ y, U , W) ∈ PR and each X ∈V ,

(3.1) add (A→ 〈r, 1〉, /0, N̄) to P′L;
(3.2) add (〈X〉 → 〈X , r, 1〉, {〈r, 1〉}, N̄−{〈r, 1〉}) to P′L;
(3.3) add (〈r, 1〉 → #1, /0, N̄) to P′L;
(3.4) add (#1→ 〈r, 2〉, {〈X , r, 1〉}, N̄−{〈X , r, 1〉}) to P′R;
(3.5) add (〈X , r, 1〉 → 〈X , r, 2〉, {〈r, 2〉}, N̄−{〈r, 2〉}) to P′L;
(3.6) add (〈r, 2〉 → #2, /0, N̄) to P′L;

PREPRIN
T

6.3 Number of Right Random Context Rules 62

(3.7) add (#2→ y, U ∪{〈X , r, 2〉}, W ∪ (N̄−{〈X , r, 2〉})) to P′R;
(3.8) add (〈X , r, 2〉 → 〈X〉, /0, N̄) to P′L;

(4) for each (A→ yY , U , W) ∈ PL, where y ∈V ∗ and Y ∈V ,
add (〈A〉 → y〈Y 〉, U , W ∪ N̄) to P′L;

(5) for each (A→ yY , /0, W) ∈ PR, where y ∈V ∗ and Y ∈V ,
add (〈A〉 → y〈Y 〉, /0, N̄) to P′L.

Steps (1) through (3) are similar to the corresponding three steps in the con-
struction given in the proof of Lemma 6.2.4. Rules from (4) and (5) take care of
rewriting the rightmost nonterminal. Note that every simulated rule from PR rewrit-
ing this nonterminal has to have its permitting context empty; otherwise, it is not
applicable to the rightmost nonterminal. Furthermore, observe that we can simulate
such a right random context rule by a left random context rule. As obvious, there
are no nonterminals to the right of the rightmost symbol.

The identity L(H) = L(G) can be proved by analogy with proving Lemma 6.2.4,
and we leave this proof to the reader. Clearly, #1 and #2 are the only right random
context nonterminals in H, so nrrcn(H) = 2. Hence, the lemma holds. ut

Theorem 6.2.8. For every context-sensitive language K, there exists a propagating
one-sided random context grammar H such that L(H) = K and nrrcn(H) = 2.

Proof. This theorem follows from Theorem 4.1.3 and Lemma 6.2.7. ut

Theorem 6.2.9. For every context-sensitive language K, there exists a propagating
one-sided random context grammar H such that L(H) = K and nlrcn(H) = 2.

Proof. This theorem can be proved by analogy with the proofs of Theorem 6.2.8
and Lemma 6.2.7. ut

6.3 Number of Right Random Context Rules

In this section, we prove that any recursively enumerable language can be generated
by a one-sided random context grammar having no more than two right random
context rules.

Theorem 6.3.1. Let K be a recursively enumerable language. Then, there is a one-
sided random context grammar, H = (N, T , PL, PR, S), such that L(H) = K and
card(PR) = 2.

Proof. Let K be a recursively enumerable language. Then, by Theorem 2.3.12, there
is a phrase-structure grammar in the Geffert normal form

G =
(
{S,A,B,C},T,P∪{ABC→ ε},S

)

PREPRIN
T

6.3 Number of Right Random Context Rules 63

satisfying L(G) = K. We next construct a one-sided random context grammar H
such that L(H) = L(G). Set N = {S, A, B, C}, V = N∪T , and N′ = N∪{S′, $, $̄, #,
Ā, B̄, Â, B̂, Ĉ}. Without any loss of generality, we assume that V ∩{S′, $, $̄, #, Ā, B̄,
Â, B̂, Ĉ}= /0. Construct

H =
(
N′,T,PL,PR,S′

)
as follows. Initially, set PL = /0 and PR = /0. Perform the following eleven steps

(1) add (S′→ $S, /0, /0) to PL;
(2) for each S→ uSa ∈ P, where u ∈ {A,AB}∗ and a ∈ T ,

add (S→ uS#a, /0,{Ā, B̄, Â, B̂,Ĉ,#}) to PL;
(3) for each S→ uSv ∈ P, where u ∈ {A,AB}∗ and v ∈ {BC,C}∗,

add (S→ uSv, /0,{Ā, B̄, Â, B̂,Ĉ,#}) to PL;
(4) for each S→ uv ∈ P, where u ∈ {A,AB}∗ and v ∈ {BC,C}∗,

add (S→ uv, /0,{Ā, B̄, Â, B̂,Ĉ,#}) to PL;
(5) add (A→ Ā, /0,N∪{$̂, Â, B̂,Ĉ,#}) to PL;

add (B→ B̄, /0,N∪{$̂, Â, B̂,Ĉ,#}) to PL;
add (A→ Â, /0,N∪{$̂, Â, B̂,Ĉ,#}) to PL;
add (B→ B̂,{Â},N∪{$̂, B̂,Ĉ,#}) to PL;
add (C→ Ĉ,{Â, B̂},N∪{$̂,Ĉ,#}) to PL;

(6) add ($→ $̂,{Â, B̂,Ĉ}, /0) to PR;
(7) add (Â→ ε,{$̂},N∪{Â, B̂,Ĉ,#}) to PL;

add (B̂→ ε,{$̂},N∪{Â, B̂,Ĉ,#}) to PL;
add (Ĉ→ ε,{$̂},N∪{Â, B̂,Ĉ,#}) to PL;

(8) add (Ā→ A,{$̂},N∪{Â, B̂,Ĉ,#}) to PL;
add (B̄→ B,{$̂},N∪{Â, B̂,Ĉ,#}) to PL;

(9) add ($̂→ $, /0,{Ā, B̄, Â, B̂,Ĉ}) to PR;
(10) add ($→ ε, /0, /0) to PL;
(11) add (#→ ε, /0,N′) to PL.

Before proving that L(H) = L(G), let us informally describe the meaning of rules
introduced in (1) through (11). The rule from (1) starts every derivation of H. The
leftmost symbol of every sentential form having at least one nonterminal is either $
or $̂. The role of these two symbols is explained later. H simulates the derivations
of G that satisfy the form described in Theorem 2.3.12. The context-free rules in P
are simulated by rules from (2) through (4). The context-sensitive rule ABC→ ε

is simulated in a several-step way. First, rules introduced in (5) are used to prepare
the erasure of ABC. These rules rewrite nonterminals from the left to the right. In
this way, it is guaranteed that whenever Â, B̂, and Ĉ appear in a sentential form,
then they form a substring of the form ÂB̂Ĉ. Then, $ is changed to $̂ by using the
rule from (6). After that, the rules from (7) erase Â, B̂, and Ĉ, one by one. Finally,
rules from (8) convert the barred versions of nonterminals back to their non-barred
versions to prepare another simulation of ABC → ε; this conversion is done in a

PREPRIN
T

6.3 Number of Right Random Context Rules 64

left-to-right way. After this conversion, $̂ is reverted back to $ by the rule from (9).
For example, AABCBCab⇒G ABCab is simulated by H as follows:

$AABCBC#a#b⇒H $ĀABCBC#a#b
⇒H $ĀÂBCBC#a#b
⇒H $ĀÂB̂CBC#a#b
⇒H $ĀÂB̂ĈBC#a#b
⇒H $̂ĀÂB̂ĈBC#a#b
⇒H $̂ĀB̂ĈBC#a#b
⇒H $̂ĀĈBC#a#b
⇒H $̂ĀBC#a#b
⇒H $̂ABC#a#b
⇒H $ABC#a#b

Symbol # is used to ensure that every sentential form of H is of the form w1w2,
where w1 ∈ (N′−{#})∗ and w2 ∈ (T ∪{#})∗. Since permitting and forbidding con-
texts cannot contain terminals, a mixture of symbols from T and N in H could
produce a terminal string out of L(G). For example, observe that $AaBC ⇒∗H $a
by rules from (5) through (9), but such a derivation does not exist in G. #s can be
eliminated by an application of rules from (11) provided that no nonterminals occur
to the left of # in the current sentential form. Consequently, all #s are erased at the
end of every successful derivation.

The leftmost symbol $ and its hatted version $̂ encode the current phase. When
$ is present, we use rules from (2) through (5). When $̂ is present, we use rules
from (7) and (8). When none of these two symbols is present, which happens after
the rule from (10) is applied, no substring ABC can be erased anymore so we have
to finish the derivation by removing all #s. Notice that when $ is erased prematurely,
no terminal string can be derived.

To establish the identity L(H) = L(G), we prove two claims. Claim 1 shows
how derivations of G are simulated by H. Then, Claim 2 demonstrates the converse
simulation—that is, it shows how derivations of H are simulated by G.

Set V ′=N′∪T . Define the homomorphism ϕ from V ∗ to V ′∗ as ϕ(X)=X for X ∈
N, and ϕ(a) = #a for a ∈ T .

Claim 1. If S⇒n
G x⇒∗G z, where x ∈ V ∗ and z ∈ T ∗, for some n ≥ 0, then S′ ⇒∗H

$ϕ(x).

Proof. This claim is established by induction on n≥ 0.

Basis. For n = 0, this claim is clear (in H, we use (S′→ $S, /0, /0) from (1)).

Induction Hypothesis. Suppose that there exists n≥ 0 such that the claim holds for
all derivations of length `, where 0≤ `≤ n.

PREPRIN
T

6.3 Number of Right Random Context Rules 65

Induction Step. Consider any derivation of the form

S⇒n+1
G w⇒∗G z

where w ∈V ∗ and z ∈ T ∗. Since n+1≥ 1, this derivation can be expressed as

S⇒n
G x⇒G w⇒∗G z

for some x ∈ V+. Without any loss of generality, we assume that x is of the form
x = x1x2x3x4, where x1 ∈ {A, AB}∗, x2 ∈ {S, ε}, x3 ∈ {BC, C}∗, and x4 ∈ T ∗ (see
Theorem 2.3.12 and [29]).

Next, we consider all possible forms of x⇒G w, covered by the following four
cases—(i) through (iv).

(i) Application of S→ uSa ∈ P. Let x = x1Sx3x4, w = x1uSax3x4, and S→ uSa ∈ P,
where x1, u∈{A, AB}∗, x3 ∈{BC, C}∗, x4 ∈ T ∗, and a∈ T . Then, by the induction
hypothesis,

S′⇒∗H $ϕ(x1Sx3x4)

By (2), (S→ uS#a, /0, {Ā, B̄, Â, B̂, Ĉ, #})∈ PL. Since $ϕ(x1Sx3x4) = $x1Sϕ(x3x4)
and alph($x1)∩{Ā, B̄, Â, B̂, Ĉ, #}= /0,

$x1Sϕ(x3x4)⇒H $x1uS#aϕ(x3x4)

As x1uS#aϕ(x3x4) = ϕ(x1uSax3x4), the induction step is completed for (i).
(ii) Application of S→ uSv ∈ P. Let x = x1Sx3x4, w = x1uSvx3x4, and S→ uSv ∈ P,

where x1, u∈ {A, AB}∗, x3, v∈ {BC, C}∗, and x4 ∈ T ∗. To complete the induction
step for (ii), proceed by analogy with (i), but use a rule from (3) instead of a rule
from (1).

(iii) Application of S→ uv∈P. Let x= x1Sx3x4, w= x1uvx3x4, and S→ uv∈P, where
x1, u ∈ {A, AB}∗, x3, v ∈ {BC, C}∗, and x4 ∈ T ∗. To complete the induction step
for (iii), proceed by analogy with (i), but use a rule from (4) instead of a rule
from (1).

(iv) Application of ABC → ε . Let x = x1ABCx3x4 and w = x1x3x4, where x1 ∈ {A,
AB}∗, x3 ∈{BC, C}∗, and x4 ∈T ∗, so x⇒G w by ABC→ ε . Then, by the induction
hypothesis,

S′⇒∗H $ϕ(x1ABCx3x4)

Let x1 = X1X2 · · ·Xk, where k = |x1| (the case when k = 0 means that x1 = ε).
Since $ϕ(x1ABCx3x4) = $x1ABCϕ(x3x4) and alph(x1) ⊆ N, by rules introduced
in (5),

PREPRIN
T

6.3 Number of Right Random Context Rules 66

$X1X2 · · ·XkABCϕ(x3x4)⇒H $X̄1X2 · · ·XkABCϕ(x3x4)
⇒H $X̄1X̄2 · · ·XkABCϕ(x3x4)

...
⇒H $X̄1X̄2 · · · X̄kABCϕ(x3x4)

⇒H $X̄1X̄2 · · · X̄kÂBCϕ(x3x4)

⇒H $X̄1X̄2 · · · X̄kÂB̂Cϕ(x3x4)

⇒H $X̄1X̄2 · · · X̄kÂB̂Ĉϕ(x3x4)

Let x̄1 = X̄1X̄2 · · · X̄k. By the rule introduced in (6),

$x̄1ÂB̂Ĉϕ(x3x4)⇒H $̂x̄1ÂB̂Ĉϕ(x3x4)

By the rules introduced in (7),

$̂x̄1ÂB̂Ĉϕ(x3x4)⇒H $̂x̄1B̂Ĉϕ(x3x4)

⇒H $̂x̄1Ĉϕ(x3x4)

⇒H $̂x̄1ϕ(x3x4)

By rules from (8),

$̂x̄1ϕ(x3x4)⇒H $̂X̄1 · · · X̄k−1Xkϕ(x3x4)

⇒H $̂X̄1 · · ·Xk−1Xkϕ(x3x4)
...
⇒H $̂X1 · · ·Xk−1Xkϕ(x3x4)

Recall that X1 · · ·Xk−1Xk = x1. Finally, by the rule from (9),

$̂x1ϕ(x3x4)⇒H $x1ϕ(x3x4)

Since x1ϕ(x3x4) = ϕ(x1x3x4), the induction step is completed for (iv).

Observe that cases (i) through (iv) cover all possible forms of x⇒G w. Thus, the
claim holds. ut

Define the homomorphism π from (V ′−{S′})∗ to V ∗ as π(X) = X for X ∈ N,
π(Ā) = π(Â) = A, π(B̄) = π(B̂) = B, π(Ĉ) = C, π(a) = a for a ∈ T , and π(#) =
π($) = π($̂) = ε . Define the homomorphism τ from (V ′−{S′})∗ to V ∗ as τ(X) =
π(X) for X ∈V ′−{S′, Â, B̂, Ĉ}, and τ(Â) = τ(B̂) = τ(Ĉ) = ε .

Claim 2. Let S′⇒n
H x⇒∗H z, where x ∈ V ′∗ and z ∈ T ∗, for some n ≥ 1. Then, x =

x0x1x2x3x4x5, where x0 ∈ {ε , $, $̂}, x1 ∈ {Ā, B̄}∗, x2 ∈ {A, B}∗, x3 ∈ {S, ÂBC, ÂB̂C,
ÂB̂Ĉ, B̂Ĉ, Ĉ, ε}, x4 ∈ {B, C}∗, and x5 ∈ (T ∪{#})∗. Furthermore,

(a) if x3 ∈ {S, ε}, then S⇒∗G π(x);

PREPRIN
T

6.3 Number of Right Random Context Rules 67

(b) if x3 ∈ {ÂBC, ÂB̂C, ÂB̂Ĉ}, then x2 = ε and S⇒∗G π(x);
(c) if x3 ∈ {B̂Ĉ, Ĉ}, then x0 = $̂, x2 = ε , and S⇒∗G τ(x).

Proof. This claim is established by induction on n≥ 1.

Basis. For n = 1, this claim is clear (the only applicable rule to S′ is (S′→ $S, /0, /0)∈
PL, introduced in (1)).

Induction Hypothesis. Suppose that there exists n≥ 1 such that the claim holds for
all derivations of length `, where 1≤ `≤ n.

Induction Step. Consider any derivation of the form

S′⇒n+1
H w⇒∗H z

where w ∈V ′∗ and z ∈ T ∗. Since n+1≥ 1, this derivation can be expressed as

S′⇒n
H x⇒H w⇒∗H z

for some x ∈V ′+. By the induction hypothesis, x = x0x1x2x3x4x5, where x0 ∈ {ε , $,
$̂}, x1 ∈ {Ā, B̄}∗, x2 ∈ {A, B}∗, x3 ∈ {S, ÂBC, ÂB̂C, ÂB̂Ĉ, B̂Ĉ, Ĉ, ε}, x4 ∈ {B, C}∗,
and x5 ∈ (T ∪{#})∗. Furthermore, (a) through (c), stated in the claim, hold.

Next, we consider all possible forms of x⇒H w, covered by the following six
cases—(i) through (vi).

(i) Application of a rule from (2). Let x3 = S, x1 = x4 = ε , and

(S→ uS#a, /0,{Ā, B̄, Â, B̂,Ĉ,#}) ∈ PL

introduced in (2), where u ∈ {A,AB}∗ and a ∈ T , so

x0x2Sx5⇒H x0x2uS#ax5

Observe that if x4 6= ε , then w⇒∗H z does not hold. Indeed, if x4 6= ε , then to
erase the nonterminals in x4, there have to be As in x2. However, the # symbol,
introduced between x2 and x4, blocks the applicability of (C → Ĉ,{Â, B̂},N ∪
{$̂,Ĉ,#})∈ PL, introduced in (5), which is needed to erase the nonterminals in x4.
Since (#→ ε , /0, N′) ∈ PL, introduced in (11), requires that there are no nonter-
minals to the left of #, the derivation cannot be successfully finished. Hence,
x4 = ε . Since u ∈ {A, B}∗ and #a ∈ (T ∪{#})∗, x0x2uS#ax5 is of the required
form. As x3 = S, by (a), S⇒∗G π(x). Observe that π(x) = π(x0x2)Sπ(x5). By (2),
S→ uSa ∈ P, so

π(x0x2)Sπ(x5)⇒G π(x0x2)uSaπ(x5)

Since π(x0x2)uSaπ(x5) = π(x0x2uS#ax5) and both B̂Ĉ and Ĉ are not substrings
of x0x2uS#ax5, the induction step is completed for (i).

PREPRIN
T

6.3 Number of Right Random Context Rules 68

(ii) Application of a rule from (3). Make this part of the proof by analogy with (i).
(iii) Application of a rule from (4). Make this part of the proof by analogy with (i).
(iv) Application of a rule from (5), (6), (9), (10), or (11). Let x ⇒H w by a rule

from (5), (6), (9), (10), or (11). Then, S⇒∗G π(w) follows directly from the in-
duction hypothesis. Observe that w is of the required form, and the induction step
is completed for (iv).

(v) Application of a rule from (7). Let x3 ∈ {ÂB̂Ĉ, B̂Ĉ, Ĉ}. By the induction hypoth-
esis (more specifically, by (b) and (c)), x2 = ε . Then, there are three subcases,
depending on x3, as demonstrated next.

(v.i) Let x3 = ÂB̂Ĉ. Then, x0x1ÂB̂Ĉx4x5⇒H x0x1B̂Ĉx4x5 by (Â→ ε , {$̂}, N ∪{Â,
B̂, Ĉ, #}) ∈ PL, introduced in (7). Observe that this is the only applica-
ble rule from (7). By the induction hypothesis, S ⇒∗G π(x). Since π(x) =
π(x1)ABCπ(x4x5),

π(x1)ABCπ(x4x5)⇒G π(x1)π(x4x5)

by ABC→ ε . As w= x0x1ÂĈx4x5 is of the required form and π(x0x1)π(x4x5)=
τ(w), the induction step is completed for (v.i).

(v.ii) Let x3 = B̂Ĉ. Then, x0x1B̂Ĉx4x5 ⇒H x0x1Ĉx4x5 by (B̂→ ε , {$̂}, N ∪ {Â, B̂,
Ĉ, #}) ∈ PL, introduced in (7). Observe that this is the only applicable rule
from (7). By the induction hypothesis, S⇒∗G τ(x). As w = x0x1Ĉx4x5 is of the
required form and τ(x) = τ(w), the induction step is completed for (v.ii).

(v.iii) Let x3 = Ĉ. Then, x0x1Ĉx4x5⇒H x0x1x4x5 by (Ĉ→ ε , {$̂}, N∪{Â, B̂, Ĉ, #})∈
PL, introduced in (7). Observe that this is the only applicable rule from (7). By
the induction hypothesis, S⇒∗G τ(x). As w = x0x1x4x5 is of the required form
and τ(x) = τ(w), the induction step is completed for (v.iii).

(vi) Application of a rule from (8). Let x⇒H w by a rule from (8). Then, x3 /∈ {B̂Ĉ, Ĉ}
has to hold; otherwise, no string of terminals can be obtained anymore. Indeed,
the deletion of B̂ and Ĉ requires that there are no symbols from N to the left of
them, and to rewrite A or B to their barred versions, $̂ cannot be present to the
left of them. However, by (c), it is there. Therefore, S⇒∗G π(w) follows directly
from the induction hypothesis. Furthermore, w is of the required form; if not, then
observe that no string of terminals can be obtained anymore. Hence, the induction
step is completed for (vi).

Observe that cases (i) through (vi) cover all possible forms of x⇒H w. Thus, the
claim holds. ut

We next prove that L(H) = L(G). Consider Claim 1 when x ∈ T ∗. Then, S′⇒∗H
$ϕ(x). By ($→ ε , /0, /0) ∈ PL, introduced in (10),

$ϕ(x)⇒H ϕ(x)

PREPRIN
T

6.3 Number of Right Random Context Rules 69

Let x = a1a2 · · ·ak, where k = |x| (the case when k = 0 means that x = ε), so ϕ(x) =
#a1#a2 · · ·#ak. By (11), (#→ ε , /0, N′) ∈ PL, so

#a1#a2 · · ·#ak ⇒H a1#a2 · · ·#ak
⇒H a1a2 · · ·#ak

...
⇒H a1a2 · · ·ak

Hence, x ∈ L(G) implies that x ∈ L(H), so L(G)⊆ L(H).
Consider Claim 2 when x∈ T ∗. Then, S⇒∗G π(x). Since x∈ T ∗, π(x) = x. Hence,

x ∈ L(H) implies that x ∈ L(G), so L(H)⊆ L(G).
The two inclusions, L(G) ⊆ L(H) and L(H) ⊆ L(G), imply that L(H) = L(G).

Since card(PR) = 2, the theorem holds. ut

From Theorem 6.3.1 and its proof, we obtain the following corollary, which
strengthens Theorem 6.2.5.

Corollary 6.3.2. Let K be a recursively enumerable language. Then, there is a
one-sided random context grammar, H = (N, T , PL, PR, S), such that L(H) = K,
card(N) = 13, nrrcn(H) = 2, and card(PR) = 2. ut

We close this section by suggesting two important open problem areas.

Open Problem 6.3.3. Can the achieved results be improved? Especially, reconsider
Theorem 6.2.5. By proving that every one-sided random context grammar G can
be converted into an equivalent one-sided random context H with no right random
context nonterminals, we would establish the generative power of left random con-
text grammars (see Definition 3.1.5 and Open Problem 4.3.7). ut

Open Problem 6.3.4. Recall that propagating one-sided random context grammars
characterize the family of context-sensitive languages (see Theorem 4.1.3). Can we
also limit the overall number of nonterminals in terms of this propagating version
like in Theorem 6.1.1? ut

PREPRIN
T

Chapter 7
Leftmost Derivations

The investigation of grammars that perform leftmost derivations is central to formal
language theory as a whole. Indeed, from a practical viewpoint, leftmost derivations
fulfill a crucial role in parsing, which represents a key application area of formal
grammars (see [1, 2, 12, 70]). From a theoretical viewpoint, an effect of leftmost
derivation restrictions to the power of grammars restricted in this way represents an
intensively investigated area of this theory as clearly indicated by many studies on
the subject. More specifically, [4, 5, 52, 64, 98] contain fundamental results con-
cerning leftmost derivations in classical Chomsky grammars, [9, 30, 65, 93, 101]
and Section 5.3 in [16] give an overview of the results concerning leftmost deriva-
tions in regulated grammars published until late 1980’s, and [14, 22, 23, 68, 72, 75]
together with Section 7.3 in [73] present several follow-up results. In addition,
[38, 51, 94] cover language-defining devices introduced with some kind of leftmost
derivations, and [8] discusses the recognition complexity of derivation languages
of various regulated grammars with leftmost derivations. Finally, [51, 71, 88] study
grammar systems working under the leftmost derivation restriction, and [27, 28, 89]
investigates leftmost derivations in terms of P systems.

Considering the significance of leftmost derivations, it comes as no surprise that
the present chapter pays a special attention to them. Indeed, it introduces three types
of leftmost derivation restrictions placed upon one-sided random context grammars.
In the type-1 derivation restriction, discussed in Section 7.1, during every deriva-
tion step, the leftmost occurrence of a nonterminal has to be rewritten. In the type-2
derivation restriction, covered in Section 7.2, during every derivation step, the left-
most occurrence of a nonterminal which can be rewritten has to be rewritten. In the
type-3 derivation restriction, studied in Section 7.2, during every derivation step, a
rule is chosen, and the leftmost occurrence of its left-hand side is rewritten.

In this chapter, we place the three above-mentioned leftmost derivation restric-
tions on one-sided random context grammars, and prove results (I) through (III),
given next.

70

PREPRIN
T

7.1 Type-1 Leftmost Derivations 71

(I) One-sided random context grammars with type-1 leftmost derivations character-
ize CF (Theorem 7.1.4). An analogous result holds for propagating one-sided
random context grammars (Theorem 7.1.5).

(II) One-sided random context grammars with type-2 leftmost derivations character-
ize RE (Theorem 7.2.4). Propagating one-sided random context grammars with
type-2 leftmost derivations characterize CS (Theorem 7.2.6).

(III) One-sided random context grammars with type-3 leftmost derivations character-
ize RE (Theorem 7.3.4). Propagating one-sided random context grammars with
type-3 leftmost derivations characterize CS (Theorem 7.3.6).

7.1 Type-1 Leftmost Derivations

In the first derivation restriction type, during every derivation step, the leftmost oc-
currence of a nonterminal has to be rewritten. This type of leftmost derivations cor-
responds to the leftmost derivations in context-free grammars (see Definition 2.3.6).

Definition 7.1.1. Let G = (N, T , PL, PR, S) be a one-sided random context gram-
mar. The type-1 direct leftmost derivation relation over V ∗, symbolically denoted
by ⇒1lm G, is defined as follows. Let u ∈ T ∗, A ∈ N and x,v ∈V ∗. Then,

uAv ⇒1lm G uxv

if and only if
uAv⇒G uxv

Let ⇒1 n
lm G and ⇒1 ∗

lm G denote the nth power of ⇒1lm G, for some n ≥ 0, and the
reflexive-transitive closure of ⇒1lm G, respectively. The -1

lm language of G is denoted
by L(G, ⇒1lm) and defined as

L
(
G, ⇒1lm

)
=
{

w ∈ T ∗ | S ⇒1 ∗
lm G w

}
ut

Notice that if the leftmost occurrence of a nonterminal cannot be rewritten by any
rule, then the derivation is blocked.

The language families generated by one-sided random context grammars with
type-1 leftmost derivations and propagating one-sided random context grammars
with type-1 leftmost derivations are denoted by ORC(⇒1lm) and ORC−ε(⇒1lm),
respectively.

Next, we prove that ORC(⇒1lm) = ORC−ε(⇒1lm) = CF.

Lemma 7.1.2. For every context-free grammar G, there is a one-sided random con-
text grammar H such that L(H, ⇒1lm) = L(G). Furthermore, if G is propagating,
then so is H.

PREPRIN
T

7.1 Type-1 Leftmost Derivations 72

Proof. Let G = (N, T , P, S) be a context-free grammar. Construct the one-sided
random context grammar

H =
(
N,T,P′,P′,S

)
where

P′ =
{
(A→ x, /0, /0) | A→ x ∈ P

}
As the rules in P′ have their permitting and forbidding contexts empty, any suc-
cessful type-1 leftmost derivation in H is also a successful derivation in G, so the
inclusion L(H, ⇒1lm)⊆ L(G) holds. On the other hand, let w ∈ L(G) be a string suc-
cessfully generated by G. Then, there exists a successful leftmost derivation of w
in G (see Theorem 2.3.7). Observe that such a leftmost derivation is also possible
in H. Thus, the other inclusion L(G)⊆ L(H, ⇒1lm) holds as well. Finally, notice that
whenever G is propagating, so is H. Hence, the theorem holds. ut

Lemma 7.1.3. For every one-sided random context grammar G, there is a context-
free grammar H such that L(H) = L(G, ⇒1lm). Furthermore, if G is propagating,
then so is H.

Proof. Let G = (N, T , PL, PR, S) be a one-sided random context grammar. In what
follows, angle brackets 〈 and 〉 are used to incorporate more symbols into a single
compound symbol. Construct the context-free grammar

H =
(
N′,T,P,〈S, /0〉

)
in the following way. Initially, set

N′ =
{
〈A,Q〉 | A ∈ N,Q⊆ N

}
and P = /0. Without any loss of generality, assume that N′ ∩V = /0. Perform (1)
and (2), given next.

(1) For each (A→ y0Y1y1Y2y2 · · ·Yhyh,U,W) ∈ PR, where yi ∈ T ∗, Yj ∈ N, for all i
and j, 0 ≤ i ≤ h, 1 ≤ j ≤ h, for some h ≥ 0, and for each 〈A,Q〉 ∈ N′ such that
U ⊆ Q and W ∩Q = /0, extend P by adding

〈A,Q〉 → y0〈Y1,Q∪{Y2,Y3, . . . ,Yh}〉y1
〈Y2,Q∪{Y3, . . . ,Yh}〉y2

...
〈Yh,Q〉yh

(2) For each (A→ y0Y1y1Y2y2 · · ·Yhyh, /0,W) ∈ PL, where yi ∈ T ∗, Yj ∈ N, for all i and
j, 0 ≤ i ≤ h, 1 ≤ j ≤ h, for some h ≥ 0, and for each 〈A,Q〉 ∈ N′, extend P by
adding

PREPRIN
T

7.2 Type-2 Leftmost Derivations 73

〈A,Q〉 → y0〈Y1,Q∪{Y2,Y3, . . . ,Yh}〉y1
〈Y2,Q∪{Y3, . . . ,Yh}〉y2

...
〈Yh,Q〉yh

Before proving that L(H) = L(G, ⇒1lm), let us give an insight into the construc-
tion. As G always rewrites the leftmost occurrence of a nonterminal, we use com-
pound nonterminals of the form 〈A,Q〉 in H, where A is a nonterminal and Q is a set
of nonterminals that appear to the right of this occurrence of A. When simulating
rules from PR, the check for the presence and absence of symbols is accomplished
by using Q. Also, when rewriting A in 〈A,Q〉 to some y, the compound nonterminals
from N′ are generated instead of nonterminals from N.

Rules from PL are simulated analogously; however, notice that if the permitting
set of such a rule is nonempty, it is never applicable in G. Therefore, such rules are
not introduced to P′. Furthermore, since there are no nonterminals to the left of the
leftmost occurrence of a nonterminal, no check for their absence is done.

Clearly, L(G, ⇒1lm) ⊆ L(H). The opposite inclusion, L(H) ⊆ L(G, ⇒1lm), can be
proved by analogy with the proof of Lemma 7.1.2 by simulating the leftmost deriva-
tion of every w ∈ L(H) by G. Observe that since the check for the presence and
absence of symbols in H is done in the second components of the compound non-
terminals, each rule introduced to P in (1) and (2) can be simulated by a rule from PR
and PL from which it is constructed.

Since H is propagating whenever G is propagating, the theorem holds. ut

Theorem 7.1.4. ORC(⇒1lm) = CF

Proof. By Lemma 7.1.2, CF ⊆ ORC(⇒1lm). By Lemma 7.1.3, ORC(⇒1lm) ⊆ CF.
Consequently, ORC(⇒1lm) = CF, so the theorem holds. ut

Theorem 7.1.5. ORC−ε(⇒1lm) = CF

Proof. Since any context-free grammar can be converted to an equivalent context-
free grammar without any erasing rules (see Theorem 7.9 in [37]), this theorem
follows from Lemmas 7.1.2 and 7.1.3. ut

7.2 Type-2 Leftmost Derivations

In the second derivation restriction type, during every derivation step, the leftmost
occurrence of a nonterminal that can be rewritten has to be rewritten.

Definition 7.2.1. Let G = (N, T , PL, PR, S) be a one-sided random context gram-
mar. The type-2 direct leftmost derivation relation over V ∗, symbolically denoted
by ⇒2lm G, is defined as follows. Let u,x,v ∈V ∗ and A ∈ N. Then,

PREPRIN
T

7.2 Type-2 Leftmost Derivations 74

uAv ⇒2lm G uxv

if and only if uAv⇒G uxv and there is no B ∈N and y ∈V ∗ such that u = u1Bu2 and
u1Bu2Av⇒G u1yu2Av.

Let ⇒2 n
lm G and ⇒2 ∗

lm G denote the nth power of ⇒2lm G, for some n ≥ 0, and the
reflexive-transitive closure of ⇒2lm G, respectively. The -2

lm language of G is denoted
by L(G, ⇒2lm) and defined as

L
(
G, ⇒2lm

)
=
{

w ∈ T ∗ | S ⇒2 ∗
lm G w

}
ut

The language families generated by one-sided random context grammars with
type-2 leftmost derivations and propagating one-sided random context grammars
with type-2 leftmost derivations are denoted by ORC(⇒2lm) and ORC−ε(⇒2lm),
respectively.

Next, we prove that ORC(⇒2lm) = RE and ORC−ε(⇒2lm) = CS.

Lemma 7.2.2. For every one-sided random context grammar G, there is a one-sided
random context grammar H such that L(H, ⇒2lm) = L(G). Furthermore, if G is
propagating, then so is H.

Proof. Let G = (N, T , PL, PR, S) be a one-sided random context grammar. We con-
struct the one-sided random context grammar H in such a way that always allows it
to rewrite an arbitrary occurrence of a nonterminal. Construct

H =
(
N′,T,P′L,P

′
R,S
)

as follows. Initially, set N̄ = {Ā | A ∈ N}, N̂ = {Â | A ∈ N}, N′ = N ∪ N̄ ∪ N̂, and
P′L = P′R = /0. Without any loss of generality, assume that N, N̄, and N̂ are pairwise
disjoint. Define the function ψ from 2N to 2N̄ as ψ(/0) = /0 and

ψ
(
{A1,A2, . . . ,An}

)
=
{

Ā1, Ā2, . . . , Ān
}

Perform (1) through (3), given next.

(1) For each A ∈ N,

(1.1) add (A→ Ā, /0,N∪ N̂) to P′L,
(1.2) add (Ā→ Â, /0,N∪ N̄) to P′R,
(1.3) add (Â→ A, /0, N̄∪ N̂) to P′R.

(2) For each (A→ y,U,W) ∈ PR, add (A→ y,U,W) to P′R.
(3) For each (A→ y,U,W) ∈ PL, add (A→ y,ψ(U),ψ(W)∪N∪ N̂) to P′L.

Before proving that L(H) = L(G), let us informally explain (1) through (3). Rules
from (2) and (3) simulate the corresponding rules from PR and PL, respectively.
Rules from (1) allow H to rewrite any occurrence of a nonterminal.

PREPRIN
T

7.2 Type-2 Leftmost Derivations 75

Set V = N ∪T . Consider a sentential form x1Ax2, where x1,x2 ∈ V ∗ and A ∈ N.
To rewrite A in H using type-2 leftmost derivations, all occurrences of nonterminals
in x1 are first rewritten to their barred versions by rules from (1.1). Then, A can be
rewritten by a rule from (2) or (3). By rules from (1.1), every occurrence of a non-
terminal in the current sentential form is then rewritten to its barred version. Rules
from (1.2) then start rewriting barred nonterminals to hatted nonterminals, which
is performed from the right to the left. Finally, hatted nonterminals are rewritten to
their original versions by rules from (1.3). This is also performed from the right to
the left.

To establish the identity L(H, ⇒2lm) = L(G), we prove two claims. First, Claim 1
shows how derivations of G are simulated by H. Then, Claim 2 demonstrates the
converse—that is, it shows how derivations of H are simulated by G.

Claim 1. If S⇒n
G x, where x ∈V ∗, for some n≥ 0, then S ⇒2 ∗

lm H x.

Proof. This claim is established by induction on n≥ 0.

Basis. For n = 0, this claim obviously holds.

Induction Hypothesis. Suppose that there exists n≥ 0 such that the claim holds for
all derivations of length `, where 0≤ `≤ n.

Induction Step. Consider any derivation of the form

S⇒n+1
G w

where w ∈V ∗. Since n+1≥ 1, this derivation can be expressed as

S⇒n
G x⇒G w

for some x ∈ V+. By the induction hypothesis, S ⇒2 ∗
lm H x. Next, we consider all

possible forms of x⇒G w, covered by the following two cases—(i) and (ii).

(i) Application of (A→ y,U,W) ∈ PR. Let x = x1Ax2 and r = (A→ y,U,W) ∈ PR,
where x1,x2 ∈V ∗ such that U ⊆ alph(x2) and W ∩ alph(x2) = /0, so

x1Ax2⇒G x1yx2

If x1 ∈ T ∗, then x1Ax2 ⇒2lm H x1yx2 by the corresponding rule introduced in (2),
and the induction step is completed for (i). Therefore, assume that alph(x1)∩N 6=
/0. Let x1 = z0Z1z1Z2z2 · · ·Zhzh, where zi ∈ T ∗ and Z j ∈N, for all i and j, 0≤ i≤ h,
1≤ j ≤ h, for some h≥ 1. By rules introduced in (1.1),

z0Z1z1Z2z2 · · ·ZhzhAx2 ⇒2 ∗
lm H z0Z̄1z1Z̄2z2 · · · Z̄hzhAx2

By the corresponding rule to r introduced in (2),

PREPRIN
T

7.2 Type-2 Leftmost Derivations 76

z0Z̄1z1Z̄2z2 · · · Z̄hzhAx2 ⇒2lm H z0Z̄1z1Z̄2z2 · · · Z̄hzhyx2

By rules introduced in (1.1) through (1.3),

z0Z̄1z1Z̄2z2 · · · Z̄hzhyx2 ⇒2 ∗
lm H z0Z1z1Z2z2 · · ·Zhzhyx2

which completes the induction step for (i).
(ii) Application of (A→ y,U,W) ∈ PL. Let x = x1Ax2 and r = (A→ y,U,W) ∈ PL,

where x1,x2 ∈V ∗ such that U ⊆ alph(x1) and W ∩ alph(x1) = /0, so

x1Ax2⇒G x1yx2

To complete the induction step for (ii), proceed by analogy with (i), but use a rule
from (3) instead of a rule from (2).

Observe that cases (i) and (ii) cover all possible forms of x⇒G w. Thus, the claim
holds. ut

Set V = N ∪T and V ′ = N′∪T . Define the homomorphism τ from V ′∗ to V ∗ as
τ(A) = τ(Ā) = τ(Â) = A, for all A ∈ N, and τ(a) = a, for all a ∈ T .

Claim 2. If S ⇒2 n
lm H x, where x ∈ V ′∗, for some n ≥ 0, then S⇒∗G τ(x), and either

x ∈ (N̄∪T)∗V ∗, x ∈ (N̄∪T)∗(N̂∪T)∗, or x ∈ (N̂∪T)∗V ∗.

Proof. This claim is established by induction on n≥ 0.

Basis. For n = 0, this claim obviously holds.

Induction Hypothesis. Suppose that there exists n≥ 0 such that the claim holds for
all derivations of length `, where 0≤ `≤ n.

Induction Step. Consider any derivation of the form

S ⇒2 n+1
lm H w

where w ∈V ′∗. Since n+1≥ 1, this derivation can be expressed as

S ⇒2 n
lm H x ⇒2lm H w

for some x ∈ V ′+. By the induction hypothesis, S⇒∗G τ(x), and either x ∈ (N̄ ∪
T)∗V ∗, x ∈ (N̄ ∪ T)∗(N̂ ∪ T)∗, or x ∈ (N̂ ∪ T)∗V ∗. Next, we consider all possible
forms of x ⇒2lm H w, covered by the following five cases—(i) through (v).

(i) Application of a rule introduced in (1.1). Let (A→ Ā, /0,N ∪ N̂) ∈ P′L be a rule
introduced in (1.1). Observe that this rule is applicable only if x = x1Ax2, where
x1 ∈ (N̄∪T)∗ and x2 ∈V ∗. Then,

x1Ax2 ⇒2lm H x1Āx2

Since τ(x1Āx2) = τ(x1Ax2) and x1Āx2 ∈ (N̄ ∪T)∗V ∗, the induction step is com-
pleted for (i).

PREPRIN
T

7.2 Type-2 Leftmost Derivations 77

(ii) Application of a rule introduced in (1.2). Let (Ā→ Â, /0,N ∪ N̄) ∈ P′R be a rule
introduced in (1.2). Observe that this rule is applicable only if x = x1Āx2, where
x1 ∈ (N̄∪T)∗ and x2 ∈ (N̂∪T)∗. Then,

x1Āx2 ⇒2lm H x1Âx2

Since τ(x1Âx2) = τ(x1Āx2) and x1Âx2 ∈ (N̄ ∪T)∗(N̂ ∪T)∗, the induction step is
completed for (ii).

(iii) Application of a rule introduced in (1.3). Let (Â→ A, /0, N̄ ∪ N̂) ∈ P′R be a rule
introduced in (1.3). Observe that this rule is applicable only if x = x1Âx2, where
x1 ∈ (N̂∪T)∗ and x2 ∈V ∗. Then,

x1Âx2 ⇒2lm H x1Ax2

Since τ(x1Ax2) = τ(x1Âx2) and x1Ax2 ∈ (N̂ ∪T)∗V ∗, the induction step is com-
pleted for (iii).

(iv) Application of a rule introduced in (2). Let (A→ y,U,W) ∈ P′R be a rule intro-
duced in (2) from (A→ y,U,W) ∈ PR, and let x = x1Ax2 such that U ⊆ alph(x2)
and W ∩ alph(x2) = /0. Then,

x1Ax2 ⇒2lm H x1yx2

and
τ(x1)Aτ(x2)⇒G τ(x1)yτ(x2)

Clearly, x1yx2 is of the required form, so the induction step is completed for (iv).
(v) Application of a rule introduced in (3). Let (A→ y,ψ(U),ψ(W)∪N ∪ N̂) ∈ P′L

be a rule introduced in (3) from (A→ y,U,W) ∈ PL, and let x = x1Ax2 such that
ψ(U)⊆ alph(x1) and (ψ(W)∪N∪ N̂)∩ alph(x1) = /0. Then,

x1Ax2 ⇒2lm H x1yx2

and
τ(x1)Aτ(x2)⇒G τ(x1)yτ(x2)

Clearly, x1yx2 is of the required form, so the induction step is completed for (v).

Observe that cases (i) through (v) cover all possible forms of x ⇒2lm H w. Thus,
the claim holds. ut

We next prove that L(H, ⇒2lm) = L(G). Consider Claim 1 for x∈ T ∗. Then, S⇒∗G
x implies that S ⇒2 ∗

lm H x, so L(G)⊆ L(H, ⇒2lm). Consider Claim 2 for x ∈ T ∗. Then,
S ⇒2 ∗

lm H x implies that S⇒∗G x, so L(H, ⇒2lm)⊆ L(G). Consequently, L(H, ⇒2lm) =
L(G).

Since H is propagating whenever G is propagating, the theorem holds. ut

PREPRIN
T

7.3 Type-3 Leftmost Derivations 78

Lemma 7.2.3. ORC(⇒2lm)⊆ RE

Proof. This inclusion follows from Church’s thesis. ut

Theorem 7.2.4. ORC(⇒2lm) = RE

Proof. Since ORC = RE (see Theorem 4.1.4), Lemma 7.2.2 implies that RE ⊆
ORC(⇒2lm). By Lemma 7.2.3, ORC(⇒2lm) ⊆ RE. Consequently, ORC(⇒2lm) =
RE, so the theorem holds. ut

Lemma 7.2.5. ORC−ε(⇒2lm)⊆ CS

Proof. Since the length of sentential forms in derivations of propagating one-sided
random context grammars is nondecreasing, propagating one-sided random context
grammars can be simulated by context-sensitive grammars. A rigorous proof of this
lemma is left to the reader. ut

Theorem 7.2.6. ORC−ε(⇒2lm) = CS

Proof. Since ORC−ε = CS (see Theorem 4.1.3), Lemma 7.2.2 implies that CS ⊆
ORC−ε(⇒2lm). By Lemma 7.2.5, ORC−ε(⇒2lm) ⊆ CS. Consequently, we have
ORC−ε(⇒2lm) = CS, so the theorem holds. ut

7.3 Type-3 Leftmost Derivations

In the third derivation restriction type, during every derivation step, a rule is chosen,
and the leftmost occurrence of its left-hand side is rewritten.

Definition 7.3.1. Let G = (N, T , PL, PR, S) be a one-sided random context gram-
mar. The type-3 direct leftmost derivation relation over V ∗, symbolically denoted
by ⇒3lm G, is defined as follows. Let u,x,v ∈V ∗ and A ∈ N. Then,

uAv ⇒3lm G uxv

if and only if uAv⇒G uxv and alph(u)∩{A}= /0.
Let ⇒3 n

lm G and ⇒3 ∗
lm G denote the nth power of ⇒3lm G, for some n ≥ 0, and the

reflexive-transitive closure of ⇒3lm G, respectively. The -3
lm language of G is denoted

by L(G, ⇒3lm) and defined as

L
(
G, ⇒3lm

)
=
{

w ∈ T ∗ | S ⇒3 ∗
lm G w

}
ut

PREPRIN
T

7.3 Type-3 Leftmost Derivations 79

Notice the following difference between the second and the third type. In the for-
mer, the leftmost occurrence of a rewritable nonterminal is chosen first, and then, a
choice of a rule with this nonterminal on its let-hand side is made. In the latter, a rule
is chosen first, and then, the leftmost occurrence of its left-hand side is rewritten.

The language families generated by one-sided random context grammars with
type-3 leftmost derivations and propagating one-sided random context grammars
with type-3 leftmost derivations are denoted by ORC(⇒3lm) and ORC−ε(⇒3lm),
respectively.

Next, we prove that ORC(⇒3lm) = RE and ORC−ε(⇒3lm) = CS.

Lemma 7.3.2. For every one-sided random context grammar G, there is a one-sided
random context grammar H such that L(H, ⇒3lm) = L(G). Furthermore, if G is
propagating, then so is H.

Proof. Let G = (N, T , PL, PR, S) be a one-sided random context grammar. We prove
this lemma by analogy with the proof of Lemma 7.2.2. That is, we construct the one-
sided random context grammar H in such a way that always allows it to rewrite an
arbitrary occurrence of a nonterminal. Construct

H =
(
N′,T,P′L,P

′
R,S
)

as follows. Initially, set N̄ = {Ā | A ∈ N}, N′ = N ∪ N̄, and P′L = P′R = /0. Without
any loss of generality, assume that N∩ N̄ = /0. Define the function ψ from 2N to 2N̄

as ψ(/0) = /0 and
ψ
(
{A1,A2, . . . ,An}

)
=
{

Ā1, Ā2, . . . , Ān
}

Perform (1) through (3), given next.

(1) For each A ∈ N,

(1.1) add (A→ Ā, /0,N) to P′L;
(1.2) add (Ā→ A, /0, N̄) to P′R.

(2) For each (A→ y,U,W) ∈ PR, add (A→ y,U,W) to P′R.
(3) For each (A→ y,U,W) ∈ PL, let U = {X1, X2, . . . , Xk}, and for each

U ′ ∈
{
{Y1,Y2, . . . ,Yk} | Yi ∈ {Xi, X̄i},1≤ i≤ k

}
add (A→ y,U ′,W ∪Ψ(W)) to P′L (U ′ = /0 if and only if U = /0).

Before proving that L(G) = L(H, ⇒3lm), let us give an insight into the construc-
tion. Rules introduced in (1) allow H to rewrite an arbitrary occurrence of a non-
terminal. Rules from (2) and (3) simulate the corresponding rules from PR and PL,
respectively.

Consider a sentential form x1Ax2, where x1,x2 ∈ (N∪T)∗ and A ∈ N, and a rule,
r = (A→ y,U,W)∈P′L∪P′R, introduced in (2) or (3). If A∈ alph(x1), all occurrences

PREPRIN
T

7.3 Type-3 Leftmost Derivations 80

of nonterminals in x1 are rewritten to their barred versions by rules from (1). Then,
r is applied, and all barred nonterminals are rewritten back to their non-barred ver-
sions. Since not all occurrences of nonterminals in x1 need to be rewritten to their
barred versions before r is applied, all combinations of barred and non-barred non-
terminals in the left permitting contexts of the resulting rules in (3) are considered.

The identity L(H, ⇒3lm) = L(G) can be established by analogy with the proof
given in Lemma 7.2.2, and we leave its proof to the reader. Finally, notice that
whenever G is propagating, then so is H. Hence, the theorem holds. ut

Lemma 7.3.3. ORC(⇒3lm)⊆ RE

Proof. This inclusion follows from Church’s thesis. ut

Theorem 7.3.4. ORC(⇒3lm) = RE

Proof. Since ORC = RE (see Theorem 4.1.4), Lemma 7.3.2 implies that RE ⊆
ORC(⇒3lm). By Lemma 7.3.3, ORC(⇒3lm) ⊆ RE. Consequently, ORC(⇒3lm) =
RE, so the theorem holds. ut

Lemma 7.3.5. ORC−ε(⇒3lm)⊆ CS

Proof. This lemma can be proved by analogy with proving Lemma 7.2.5. ut

Theorem 7.3.6. ORC−ε(⇒3lm) = CS

Proof. Since ORC−ε = CS (see Theorem 4.1.3), Lemma 7.3.2 implies that CS ⊆
ORC−ε(⇒3lm). By Lemma 7.3.5, ORC−ε(⇒3lm) ⊆ CS. Consequently, we have
ORC−ε(⇒3lm) = CS, so the theorem holds. ut

In the conclusion of this chapter, we compare the achieved results with some well-
known results of formal language theory. More specifically, we relate the language
families generated by one-sided random context grammars with leftmost deriva-
tions to the language families generated by random context grammars with leftmost
derivations.

The families of languages generated by random context grammars with type-
1 leftmost derivations, random context grammars with type-2 leftmost deriva-
tions, and random context grammars with type-3 leftmost derivations are denoted
by RC(⇒1lm), RC(⇒2lm), and RC(⇒3lm), respectively (see [16] for the definitions
of all these families). The notation without ε stands for the corresponding propa-
gating family. For example, RC−ε(⇒1lm) denotes the language family generated by
propagating random context grammars with type-1 leftmost derivations.

The fundamental relations between random context grammars and one-sided ran-
dom context grammars without leftmost derivations are summarized next.

Corollary 7.3.7. CF⊂ RC−ε ⊂ORC−ε = CS⊂ORC = RC = RE

PREPRIN
T

7.3 Type-3 Leftmost Derivations 81

Proof. This corollary follows from Theorems 2.3.14, 4.1.3, and 4.1.4. ut

Considering type-1 leftmost derivations, we significantly decrease the power of
both one-sided random context grammars and random context grammars.

Corollary 7.3.8. ORC(⇒1lm) = RC(⇒1lm) = CF

Proof. This corollary follows from Theorem 7.1.4 in this chapter and from Theo-
rem 1.4.1 in [16]. ut

Type-2 leftmost derivations increase the generative power of propagating random
context grammars, but the generative power of random context grammars and one-
sided random context grammars remains unchanged.

Corollary 7.3.9.

(i) ORC−ε(⇒2lm) = RC−ε(⇒2lm) = CS
(ii) ORC(⇒2lm) = RC(⇒2lm) = RE

Proof. This corollary follows from Theorems 7.2.4 and 7.2.6 in this chapter and
from Theorem 1.4.4 in [16]. ut

Finally, type-3 leftmost derivations are not enough for propagating random con-
text grammars to generate the family of context-sensitive languages, so one-sided
random context grammars with type-3 leftmost derivations are more powerful.

Corollary 7.3.10.

(i) RC−ε(⇒3lm)⊂ORC−ε(⇒3lm) = CS
(ii) ORC(⇒3lm) = RC(⇒3lm) = RE

Proof. This corollary follows from Theorems 7.3.4 and 7.3.6 in the this chapter,
from Theorem 1.4.5 in [16], and from Remarks 5.11 in [22]. ut

We close this chapter by making a remark about rightmost derivations. Of course,
we can define and study rightmost derivations in one-sided random context gram-
mars by analogy with their leftmost counterparts, discussed above. We can also re-
formulate and establish the same results as above in terms of the rightmost deriva-
tions. All this discussion of rightmost derivations is so analogous with the above
discussion of leftmost derivations that we leave it to the reader.

PREPRIN
T

Chapter 8
Generalized One-Sided Forbidding Grammars

In [66], so-called generalized forbidding grammars that are based upon context-free
rules, each of which may be associated with finitely many forbidding strings, were
introduced and investigated. A rule like this can rewrite a nonterminal provided that
none of its forbidding strings occur in the current sentential form; apart from this,
these grammars work just like context-free grammars. As opposed to context-free
grammars, however, they are computationally complete—that is, they generate the
family of recursively enumerable languages (see Theorem 1 in [66]), and this prop-
erty obviously represents their crucially important advantage over ordinary context-
free and forbidding grammars (see Theorem 2.3.15).

Taking a closer look at the rewriting process in generalized forbidding grammars,
we see that they always verify the absence of forbidding strings within their entire
sentential forms. To simplify and accelerate their rewriting process, it is obviously
more than desirable to modify these grammars so they make this verification only
within some prescribed portions of the rewritten sentential forms while remaining
computationally complete. Generalized one-sided forbidding grammars, which are
defined and studied in the present chapter, represent a modification satisfying these
properties.

More precisely, in a generalized one-sided forbidding grammar, the set of rules
is divided into the set of left forbidding rules and the set of right forbidding rules.
When applying a left forbidding rule, the grammar checks the absence of its forbid-
ding strings only in the prefix to the left of the rewritten nonterminal in the current
sentential form. Similarly, when applying a right forbidding rule, it performs an
analogous check to the right. Apart from this, it works like any generalized forbid-
ding grammar.

Most importantly, the present chapter demonstrates that generalized one-sided
forbidding grammars characterize the family of recursively enumerable languages.
In fact, these grammars remain computationally complete even under the restriction
that any of their forbidding strings is of length two or less. On the other hand, if a
generalized one-sided forbidding grammar has all left forbidding rules without any

82

PREPRIN
T

8.1 Definitions and Examples 83

forbidding strings, then it necessarily generates a context-free language; an analo-
gous result holds in terms of right forbidding rules, too. Even more surprisingly, any
generalized one-sided forbidding grammar that has the set of left forbidding rules
coinciding with the set of right forbidding rules generates a context-free language.

This chapter is divided into two sections. First, Section 8.1 defines generalized
one-sided forbidding grammars and illustrate them by an example. Then, Sec-
tion 8.2 establishes their generative power.

8.1 Definitions and Examples

Without further ado, let us define generalized one-sided forbidding grammars and
illustrate them by an example. Recall that for an alphabet N and a string x ∈ N∗,
sub(x) denotes the set of all substrings of x, and fin(N) denotes the set of all finite
languages over N (see Section 2.2).

Definition 8.1.1. A generalized one-sided forbidding grammar is a quintuple

G =
(
N,T,PL,PR,S

)
where N and T are two disjoint alphabets, S ∈ N, and

PL,PR ⊆ N×
(
N∪T

)∗×fin(N)

are two finite relations. Set V = N ∪T . The components V , N, T , PL, PR, and S are
called the total alphabet, the alphabet of nonterminals, the alphabet of terminals,
the set of left forbidding rules, the set of right forbidding rules, and the start sym-
bol, respectively. Each (A,x,F) ∈ PL ∪PR is written as (A→ x,F) throughout this
chapter. For (A→ x, F) ∈ PL, F is called the left forbidding context. Analogously,
for (A→ x, F) ∈ PR, F is called the right forbidding context. The direct derivation
relation over V ∗, symbolically denoted by⇒G, is defined as follows. Let u,v ∈V ∗

and (A→ x, F) ∈ PL∪PR. Then,

uAv⇒G uxv

if and only if
(A→ x,F) ∈ PL and F ∩ sub(u) = /0

or
(A→ x,F) ∈ PR and F ∩ sub(v) = /0

Let ⇒n
G and ⇒∗G denote the nth power of ⇒G, for some n ≥ 0, and the reflexive-

transitive closure of⇒G, respectively. The language of G is denoted by L(G) and
defined as

L(G) =
{

w ∈ T ∗ | S⇒∗G w
}

ut

PREPRIN
T

8.1 Definitions and Examples 84

Next, we introduce the notion of a degree of G. Informally, it is the length of the
longest string in the forbidding contexts of the rules of G. Let N be an alphabet.
For L ∈ fin(N), max-len(L) denotes the length of the longest string in L. We set
max-len(/0) = 0.

Definition 8.1.2. Let G = (N, T , PL, PR, S) be a generalized one-sided forbidding
grammar. G is of degree (m,n), where m,n ≥ 0, if (A→ x,F) ∈ PL implies that
max-len(F)≤ m and (A→ x,F) ∈ PR implies that max-len(F)≤ n. ut

Next, we illustrate the previous definitions by an example.

Example 8.1.3. Consider the generalized one-sided forbidding grammar

G =
(
{S,A,B,A′,B′, Ā, B̄},{a,b,c},PL,PR,S

)
where PL contains the following five rules

(S→ AB, /0) (B→ bB′c,{A, Ā})
(B→ B̄,{A,A′})

(B′→ B,{A′})
(B̄→ ε,{Ā})

and PR contains the following four rules

(A→ aA′,{B′})
(A→ Ā,{B′})

(A′→ A,{B})
(Ā→ ε,{B})

Since the length of the longest string in the forbidding contexts of rules from PL
and PR is 1, G is of degree (1,1). It is rather easy to see that every derivation that
generates a nonempty string of L(G) is of the form

S ⇒G AB
⇒G aA′B
⇒G aA′bB′c
⇒G aAbB′c
⇒G aAbBc
⇒∗G anAbnBcn

⇒G anĀbnBcn

⇒G anĀbnB̄cn

⇒G anbnB̄cn

⇒G anbncn

where n≥ 1. The empty string is generated by

S⇒G AB⇒G ĀB⇒G ĀB̄⇒G B̄⇒G ε

Based on the previous observations, we see that G generates the non-context-free
language {

anbncn | n≥ 0
}

ut

PREPRIN
T

8.2 Generative Power 85

The language family generated by generalized one-sided forbidding grammars of
degree (m,n) is denoted by GOF(m,n). Furthermore, set

GOF =
⋃

m,n≥0

GOF(m,n)

8.2 Generative Power

In this section, we establish the generative power of generalized one-sided forbid-
ding grammars. More specifically, we prove results (I) through (IV), given next.

(I) Generalized one-sided forbidding grammars of degrees (n,0) or (0,n), for any
non-negative integer n, characterize only the family of context-free languages
(Theorem 8.2.3).

(II) Generalized one-sided forbidding grammars of degree (1,1) generate a proper
superfamily of the family of context-free languages (Theorem 8.2.4).

(III) Generalized one-sided forbidding grammars of degrees (1,2) or (2,1) character-
ize the family of recursively enumerable languages (Theorem 8.2.7).

(IV) Generalized one-sided forbidding grammars with the set of left forbidding rules
coinciding with the set of right forbidding rules characterize only the family of
context-free languages (Theorem 8.2.13).

First, we consider generalized one-sided forbidding grammars of degrees (n,0)
and (0,n), where n≥ 0.

Lemma 8.2.1. GOF(n,0) = CF for every n≥ 0.

Proof. Let n be a non-negative integer. As any context-free grammar is also a gen-
eralized one-sided forbidding grammar in which the empty sets are attached to each
of its rules, the inclusion CF ⊆ GOF(n,0) holds. To establish the other inclusion,
GOF(n,0) ⊆ CF, let G = (N, T , PL, PR, S) be a generalized one-sided forbidding
grammar of degree (n,0), and let

H =
(
N,T,P′,S

)
be a context-free grammar with

P′ =
{

A→ x | (A→ x,F) ∈ PL∪PR
}

As any successful derivation in G is also a successful derivation in H, the inclu-
sion L(G) ⊆ L(H) holds. On the other hand, let w ∈ L(H) be a string success-
fully generated by H. Then, there exists a successful leftmost derivation of w in H
(see Theorem 2.3.7). Such a leftmost derivation is, however, also possible in G be-
cause the leftmost nonterminal can always be rewritten. Thus, the other inclusion
L(H)⊆ L(G) holds as well, which completes the proof. ut

PREPRIN
T

8.2 Generative Power 86

Lemma 8.2.2. GOF(0,n) = CF for every n≥ 0.

Proof. This lemma can be proved by analogy with the proof of Lemma 8.2.1. The
only difference is that instead of leftmost derivations, we use rightmost derivations.

ut

Theorem 8.2.3. GOF(n,0) = GOF(0,n) = CF for every n≥ 0.

Proof. This theorem follows from Lemmas 8.2.1 and 8.2.2. ut

Next, we consider generalized one-sided forbidding grammars of degree (1,1).

Theorem 8.2.4. CF⊂GOF(1,1)

Proof. This theorem follows from Example 8.1.3. ut

In what follows, we prove that generalized one-sided forbidding grammars of
degrees (1,2) and (2,1) are computationally complete—that is, they characterize
the family of recursively enumerable languages.

Lemma 8.2.5. GOF(2,1) = RE

Proof. The inclusion GOF(2,1) ⊆ RE follows from Church’s thesis, so we only
prove that RE⊆GOF(2,1).

Let K ∈ RE. By Theorem 2.3.9, there is a phrase-structure grammar G = (N,
T , P, S) in the Penttonen normal form such that L(G) = K. We next construct a
generalized one-sided forbidding grammar H of degree (2,1) such that L(H) =
L(G). Set

W =
{
〈r, i〉 | r = (AB→ AC) ∈ P,A,B,C ∈ N, i = 1,2

}
Let S′ and # be two new symbols. Without any loss of generality, assume that N, W ,
and {S′,#} are pairwise disjoint. Construct

H =
(
N′,T,PL,PR,S′

)
as follows. Initially, set N′ = N ∪W ∪ {S′,#}, PL = /0, and PR = /0. Perform (1)
through (5), given next.

(1) Add (S′→ #S, /0) to PL.
(2) For each A→ a ∈ P, where A ∈ N and a ∈ T , add (A→ a,N′) to PR.
(3) For each A→ y ∈ P, where A ∈ N and y ∈ {ε}∪NN, add (A→ y, /0) to PL.
(4) For each r = (AB→ AC) ∈ P, where A,B,C ∈ N,

(4.1) add (B→ 〈r,1〉〈r,2〉,W) to PL;
(4.2) add (〈r,2〉 →C,N′W −{A〈r,1〉}) to PL;
(4.3) add (〈r,1〉 → ε,W) to PR.

PREPRIN
T

8.2 Generative Power 87

(5) Add (#→ ε,N′) to PR.

Before proving that L(H) = L(G), let us informally describe (1) through (5). G
generates each string of L(G) by simulating the corresponding derivations of H as
follows. Every derivation is started by (S′→ #S, /0)∈ PL, introduced in (1). Context-
free rules of the form A→ y, where A ∈ N and y ∈ T ∪{ε}∪NN, are simulated
by rules from (2) and (3). Since rules introduced in (2) forbid the presence of non-
terminals to the right of the rewritten symbol, every sentential form of H is of the
form xy, where x ∈ N′∗ and y ∈ T ∗—that is, it begins with a string of nonterminals
and ends with a string of terminals. In this way, no terminal is followed by a nonter-
minal. This is needed to properly simulate context-sensitive rules, described next.
Rules of the form AB→ AC, where A,B,C ∈ N, are simulated in a three-step way
by rules from (4). Observe that the forbidding context of rules from (4.2) ensures
that the rewritten symbol B is directly preceded by A. Indeed, if B is not directly
preceded by A, then a string different from A〈r,1〉, where r = (AB→ AC), occurs
to the left of 〈r,2〉 (recall that # is at the beginning of every sentential form having
at least one nonterminal). The end-marker # is erased at the end of every successful
derivation by (#→ ε,N′) ∈ PR, introduced in (5).

To establish the identity L(H) = L(G), we prove three claims. Claim 1 demon-
strates that every y ∈ L(G) can be generated by G in two stages; first, only nonter-
minals are generated, and then, all nonterminals are rewritten to terminals. Claim 2
shows how such derivations of G are simulated by H. Finally, Claim 3 shows how
derivations of H are simulated by G.

Claim 1. For every y ∈ L(G), there exists a derivation of the form S⇒∗G x⇒∗G y,
where x ∈ N+, and during x⇒∗G y, only rules of the form A→ a, where A ∈ N and
a ∈ T , are applied.

Proof. Let y ∈ L(G). Since there are no rules in P with symbols from T on their
left-hand sides, we can always rearrange all the applications of the rules occurring
in S⇒∗G y so the claim holds. ut

Claim 2. If S⇒n
G x, where x ∈ N∗, for some n≥ 0, then S′⇒∗H #x.

Proof. This claim is established by induction on n≥ 0.

Basis. Let n = 0. Then, for S⇒0
G S, there is S′⇒H #S by the rule from (1), so the

basis holds.

Induction Hypothesis. Suppose that there exists n≥ 0 such that the claim holds for
all derivations of length `, where 0≤ `≤ n.

Induction Step. Consider any derivation of the form

S⇒n+1
G w

PREPRIN
T

8.2 Generative Power 88

where w ∈ N∗. Since n+1≥ 1, this derivation can be expressed as

S⇒n
G x⇒G w

for some x ∈ N+. By the induction hypothesis, S′⇒∗H #x.
Next, we consider all possible forms of x⇒G w, covered by the following two

cases—(i) and (ii).

(i) Let A→ y∈ P and x = x1Ax2, where A∈N, x1,x2 ∈N∗, and y∈ {ε}∪NN. Then,

x1Ax2⇒G x1yx2

By (2), (A→ y, /0) ∈ PL, so

#x1Ax2⇒H #x1yx2

which completes the induction step for (i).
(ii) Let AB→ AC ∈ P and x = x1ABx2, where A,B,C ∈ N and x1,x2 ∈ N∗. Then,

x1ABx2⇒G x1BCx2

Let r = (AB→ AC). By (4.1), (B→ 〈r,1〉〈r,2〉,W) ∈ PL. Since sub(#x1A)∩W =
/0,

#x1ABx2⇒H #x1A〈r,1〉〈r,2〉x2

By (4.2), (〈r,2〉 → C,N′W − {A〈r,1〉}) ∈ PL. Since sub(#x1A〈r,1〉) ∩ (N′W −
{A〈r,1〉}) = /0,

#x1A〈r,1〉〈r,2〉x2⇒H #x1A〈r,1〉Cx2

By (4.3), (〈r,1〉 → ε,W) ∈ PR. Since sub(Cx2)∩W = /0,

#x1A〈r,1〉Cx2⇒H #x1ACx2

which completes the induction step for (ii).

Observe that cases (i) and (ii) cover all possible forms of x⇒G w. Thus, the claim
holds. ut

Set V = N ∪T and V ′ = N′∪T . Define the homomorpishm τ from V ′∗ to V ∗ as
τ(X) = X for all X ∈V , τ(S′) = S, τ(#) = ε , τ(〈r,1〉) = ε and τ(〈r,2〉) = B for all
r = (AB→ AC) ∈ P.

Claim 3. If S′ ⇒n
H x, where x ∈ V ′∗, for some n ≥ 1, then S⇒∗G τ(x) and x is of

the form uv, where u ∈ {ε}∪{#}(N ∪W)∗, v ∈ T ∗, and if 〈r,2〉 ∈ sub(u), then this
occurrence of 〈r,2〉 is directly preceded by 〈r,1〉.

PREPRIN
T

8.2 Generative Power 89

Proof. This claim is established by induction on n≥ 0.

Basis. Let n = 1. Then, for S′⇒H #S by the rule from (1), there is S⇒0
G S. Since

#S is of the required form, the basis holds.

Induction Hypothesis. Suppose that there exists n≥ 1 such that the claim holds for
all derivations of length `, where 1≤ `≤ n.

Induction Step. Consider any derivation of the form

S′⇒n+1
H w

where w ∈V ′∗. Since n+1≥ 1, this derivation can be expressed as

S′⇒n
H x⇒H w

for some x ∈ V ′+. By the induction hypothesis, S⇒∗G τ(x) and x is of the form uv,
where u ∈ {ε}∪{#}(N ∪W)∗, v ∈ T ∗, and if 〈r,2〉 ∈ sub(u), then this occurrence
of 〈r,2〉 is directly preceded by 〈r,1〉.

Next, we consider all possible forms of x⇒H w, covered by the following six
cases—(i) through (vi).

(i) Application of a rule from (2). Let x = x1Ax2 and (A→ a,N′) ∈ PR so that N′∩
sub(x2) = /0, where x1,x2 ∈V ′∗, A ∈ N, and a ∈ T . Then,

x1Ax2⇒H x1ax2

Clearly, x1ax2 is of the required form. By the induction hypothesis, τ(x) =
τ(x1)Aτ(x2). By (2), A→ a ∈ P, so

τ(x1)Aτ(x2)⇒G τ(x1)aτ(x2)

which completes the induction step for (i).
(ii) Application of a rule from (3). Let x = x1Ax2 and (A→ y, /0) ∈ PL, where x1,x2 ∈

V ′∗, A ∈ N, and y ∈ {ε}∪NN. Then,

x1Ax2⇒H x1yx2

Clearly, x1yx2 is of the required form. By the induction hypothesis, τ(x) =
τ(x1)Aτ(x2). By (3), A→ y ∈ P, so

τ(x1)Aτ(x2)⇒G τ(x1)yτ(x2)

which completes the induction step for (ii).

PREPRIN
T

8.2 Generative Power 90

(iii) Application of a rule from (4.1). Let x = x1Bx2 and (B→ 〈r,1〉〈r,2〉,W) ∈ PL so
that W ∩ sub(x1) = /0, where x1,x2 ∈V ′∗, B ∈ N, and r = (AB→ AC) ∈ P. Then,

x1Bx2⇒H x1〈r,1〉〈r,2〉x2

Clearly, x1〈r,1〉〈r,2〉x2 is of the required form, and since τ(x1〈r,1〉〈r,2〉x2) =
τ(x1)Bτ(x2), the induction step for (iii) follows directly from the induction hy-
pothesis.

(iv) Application of a rule from (4.2). Let x = x1〈r,2〉x2 and (〈r,2〉 → C,N′W −
{A〈r,1〉}) ∈ PL so that (N′W − {A〈r,1〉}) ∩ sub(x1) = /0, where x1,x2 ∈ V ′∗,
C ∈ N, and r = (AB → AC) ∈ P. By the induction hypothesis, since 〈r,2〉 ∈
sub(x), x is of the form #x′1〈r,1〉〈r,2〉x2, where x′1 ∈ V ′∗. Furthermore, since
(N′W −{A〈r,1〉})∩ sub(x1) = /0, x′1 is of the form x′′1A. So,

#x′′1A〈r,1〉〈r,2〉x2⇒H #x′′1A〈r,1〉Cx2

Clearly, #x′′1A〈r,1〉Cx2 is of the required form. By the induction hypothesis,
τ(x) = τ(x′′1)ABτ(x2). By (4.2), AB→ AC ∈ P, so

τ(x′′1)ABτ(x2)⇒G τ(x′′1)ACτ(x2)

which completes the induction step for (iv).
(v) Application of a rule from (4.3). Let x = x1〈r,1〉x2 and (〈r,1〉 → ε,W) ∈ PR so

that W ∩ sub(x2) = /0, where x1,x2 ∈V ′∗ and r = (AB→ AC) ∈ P. Then,

x1〈r,1〉x2⇒H x1x2

Clearly, x1x2 is of the required form. Since τ(x1〈r,1〉x2) = τ(x1x2), the induction
step for (v) follows directly from the induction hypothesis.

(vi) Application of a rule from (5). Let x = #x′ and (#→ ε,N′) ∈ PR so that N′ ∩
sub(x′) = /0 (this implies that x′ ∈ T ∗). Then, #x′ ⇒H x′. Clearly, x′ is of the
required form. Since x′ ∈ T ∗, τ(x) = x, so the induction step for (vi) follows
directly from the induction hypothesis.

Observe that cases (i) through (vi) cover all possible forms of x⇒H w. Thus, the
claim holds. ut

We next establish the identity L(H) = L(G). Let y ∈ L(G). Then, by Claim 1,
there exists a derivation S⇒∗G x⇒∗G y such that x ∈ N+ and during x⇒∗G y, G uses
only rules of the form A→ a, where A ∈ N and a ∈ T . By Claim 2, S′ ⇒∗H #x.
Let x = X1X2 · · ·Xk and y = a1a2 · · ·ak, where k = |x|. Since x⇒∗G y, Xi → ai ∈ P
for i = 1,2, . . . ,k. By (2), (Xi→ ai,N′) ∈ PR for i = 1,2, . . . ,k. Then,

PREPRIN
T

8.2 Generative Power 91

#X1 · · ·Xk−1Xk ⇒H #X1 · · ·Xk−1ak
⇒H #X1 · · ·ak−1ak

...
⇒H #a1a2 · · ·ak

By (5), (#→ ε,N′) ∈ PR. Since y ∈ T ∗, #y⇒H y. Consequently, y ∈ L(G) implies
that y ∈ L(H), so L(G)⊆ L(H).

Consider Claim 3 for x ∈ T ∗. Then, x ∈ L(H) implies that τ(x) = x ∈ L(G), so
L(H) ⊆ L(G). As L(G) ⊆ L(H) and L(H) ⊆ L(G), L(H) = L(G). Since H is of
degree (2,1), the theorem holds. ut

Lemma 8.2.6. GOF(1,2) = RE

Proof. This lemma can be proved by analogy with the proof of Lemma 8.2.5. First,
by modifying the proofs given in [91], we can convert any phrase-structure grammar
into an equivalent phrase-structure grammar G = (N, T , P, S), where every rule in P
is in one of the following four forms:

(i) BA→CA,
(ii) A→ BC,

(iii) A→ a,
(iv) A→ ε , where A,B,C ∈ N, and a ∈ T .

Notice that this normal form differs from the Penttonen normal only by the form
of context-sensitive rules. Then, in the proof Lemma 8.2.5, we accordingly modify
the rules introduced to PL and PR so that the resulting grammar is of degree (1,2)
instead of (2,1). A rigorous proof of this lemma is left to the reader. ut

Theorem 8.2.7. GOF(1,2) = GOF(2,1) = RE

Proof. This theorem follows from Lemmas 8.2.5 and 8.2.6. ut

From Theorem 8.2.7, we obtain the following three corollaries.

Corollary 8.2.8. GOF(m,n) = RE for every m≥ 2 and n≥ 1. ut

Corollary 8.2.9. GOF(m,n) = RE for every m≥ 1 and n≥ 2. ut

Corollary 8.2.10. GOF = RE ut

We next turn our attention to generalized one-sided forbidding grammars with
the set of left forbidding rules coinciding with the set of right forbidding rules.

Lemma 8.2.11. Let K be a context-free language. Then, there exists a generalized
one-sided forbidding grammar, G=(N, T , PL, PR, S), satisfying PL =PR and L(G)=
K.

PREPRIN
T

8.2 Generative Power 92

Proof. Let K be a context-free language. Then, there exists a context-free grammar,
H = (N, T , P, S), such that L(H) = K. Define the generalized one-sided forbidding
grammar

G =
(
N,T,P′,P′,S

)
with

P′ =
{
(A→ x, /0, /0) | A→ x ∈ P

}
Clearly, L(G) = L(H) = K, so the lemma holds. ut

Lemma 8.2.12. Let G = (N, T , PL, PR, S) be a generalized one-sided forbidding
grammar satisfying PL = PR. Then, L(G) is context-free.

Proof. Let G = (N, T , PL, PR, S) be a generalized one-sided forbidding grammar
satisfying PL = PR. Define the context free grammar H = (N, T , P′, S) with

P′ =
{

A→ x | (A→ x, /0,F) ∈ PL
}

Observe that since PL = PR, it is sufficient to consider just the rules from PL. As any
successful derivation in G is also a successful derivation in H, the inclusion L(G)⊆
L(H) holds. On the other hand, let w∈ L(H) be a string successfully generated by H.
Then, there exists a successful leftmost derivation of w in H (see Theorem 2.3.7).
Observe that such a leftmost derivation is also possible in G because the leftmost
nonterminal can always be rewritten. Indeed, P′ contains only rules originating from
the rules in PL and all rules in PL are applicable to the leftmost nonterminal. Thus,
the other inclusion L(H)⊆ L(G) holds as well, which completes the proof. ut

Theorem 8.2.13. A language K is context-free if and only if there is a generalized
one-sided forbidding grammar, G = (N, T , PL, PR, S), satisfying K = L(G) and
PL = PR.

Proof. This theorem follows from Lemmas 8.2.11 and 8.2.12. ut

In the conclusion of this chapter, we first describe relations of generalized one-
sided forbidding grammars to other variants of forbidding grammars. Then, we state
several open problems related to the achieved results.

We begin by considering generalized forbidding grammars (see [66]). Let GF de-
note the family of languages generated by these generalized forbidding grammars.

Corollary 8.2.14. GF = GOF

Proof. This corollary follows from Corollary 8.2.10 in this chapter and from Theo-
rem 1 in [66], which says that GF = RE. ut

Next, we move to forbidding grammars (see Definition 2.3.13).

PREPRIN
T

8.2 Generative Power 93

Corollary 8.2.15. For⊂GOF

Proof. This corollary follows from Corollary 8.2.10 in this chapter and from Theo-
rems 2.3.5 and 2.3.15, which imply that For⊂ RE. ut

From the definition of a one-sided forbidding grammar, we immediately obtain
the following corollary.

Corollary 8.2.16. GOF(1,1) = OFor ut

The next three open problem areas are related to the achieved results.

Open Problem 8.2.17. By Theorem 8.2.16, GOF(1,1) = OFor. However, recall
that it is not known whether OFor = RE or OFor⊂ RE (see Chapter 4). Are gen-
eralized one-sided forbidding grammars of degree (1,1) capable of generating all
recursively enumerable languages? ut

Open Problem 8.2.18. Let G = (N, T , PL, PR, S) be a generalized one-sided forbid-
ding grammar. If (A→ x,F)∈ PL∪PR implies that |x| ≥ 1, then G is said to be prop-
agating. What is the generative power of propagating generalized one-sided forbid-
ding grammars? Do they characterize the family of context-sensitive languages?

ut

Open Problem 8.2.19. By Theorem 8.2.7, the degrees (2,1) or (1,2) suffice to
characterize the family of recursively enumerable languages. Can we also place a
limitation on the number of nonterminals or on the number of rules with nonempty
forbidding contexts? Recall that in terms of generalized forbidding grammars, a
limitation like this has been achieved (see [59, 66, 76]). ut

PREPRIN
T

Chapter 9
LL One-Sided Random Context Grammars

In the previous chapters, have introduced and studied one-sided random context
grammars from a purely theoretical viewpoint. From a more practical viewpoint,
however, it is also desirable to make use of them in such grammar-based application-
oriented fields as syntax analysis (see [1, 2]). An effort like this obviously gives
rise to introducing and investigating their parsing-related variants, such as LL
versions—the subject of the present chapter.

LL one-sided random context grammars, introduced in this chapter, represent or-
dinary one-sided random context grammars restricted by analogy with LL require-
ments placed upon LL context-free grammars. That is, for every positive integer k,
(1) LL(k) one-sided random context grammars always rewrite the leftmost nonter-
minal in the current sentential form during every derivation step, and (2) if there
are two or more applicable rules with the same nonterminal on their left-hand sides,
then the sets of all terminal strings of length k that can begin a string obtained by a
derivation started by using these rules are disjoint. The class of LL grammars is the
union of all LL(k) grammars, for every k ≥ 1.

Recall that one-sided random context grammars characterize the family of re-
cursively enumerable languages (see Theorem 4.1.4). Of course, it is natural to ask
whether LL one-sided random context grammars generate the family of LL context-
free languages or whether they are more powerful. As its main result, this chapter
proves that the families of LL one-sided random context languages and LL context-
free languages coincide. Indeed, it describes transformations that convert any LL(k)
one-sided random context grammar to an equivalent LL(k) context-free grammar
and conversely.

In fact, we take a closer look at the generation of languages by both versions
of LL grammars. That is, we demonstrate an advantage of LL one-sided random
context grammars over LL context-free grammars. More precisely, for every k ≥ 1,
we present a specific LL(k) one-sided random context grammar G and prove that
every equivalent LL(k) context-free grammar has necessarily more nonterminals
or rules than G. Thus, to rephrase this result more broadly and pragmatically, we

94

PREPRIN
T

9.1 Definitions 95

actually show that LL(k) one-sided random context grammars can possibly allow us
to specify LL(k) languages more succinctly and economically than LL(k) context-
free grammars do.

This chapter is divided into three sections. First, Section 9.1 defines LL one-sided
random context grammars. Then, Section 9.2 gives a motivational example. After
that, Section 9.3 proves the main result sketched above, and formulates three open
problems.

9.1 Definitions

In this section, we define LL context-free grammars and LL one-sided random con-
text grammars. Since we pay a principal attention to context-free and one-sided
random context grammars working in the leftmost way, in what follows, by a
context-free and one-sided random context grammar, respectively, we always mean
a context-free and one-sided random context grammar working in the leftmost way,
respectively (see Section 2.3 and Chapter 7). In terms of one-sided random con-
text grammars, by this leftmost way, we mean the type-1 leftmost derivations (see
Section 7.1).

We begin by defining the LL(k) property of context-free grammars, for every
k ≥ 1. To simplify the definition, we end all sentential forms by k end-markers,
denoted by $, and we extend the derivation relation to V ∗{$}k in the standard way—
that is, u$k⇒ v$k if and only if u⇒ v.

Definition 9.1.1 (see [2]). Let G = (N, T , P, S) be a context-free grammar and
$ /∈ N∪T be a symbol. For every r = (A→ x) ∈ P and k ≥ 1, define

Predictk(r)⊆ T ∗{$}∗

as follows: γ ∈ Predictk(r) if and only if |γ|= k and

S$k ⇒∗lm G uAv$k ⇒lm G uxv$k ⇒∗lm G uγw

where u ∈ T ∗, v,x ∈V ∗, and w ∈V ∗{$}∗. ut

Using the above definition, we next define LL context-free grammars.

Definition 9.1.2 (see [2]). Let G = (N, T , P, S) be a context-free grammar. G is an
LL(k) context-free grammar, where k ≥ 1, if it satisfies the following condition: if
p = (A→ x) ∈ P and r = (A→ y) ∈ P such that x 6= y, then

Predictk(p)∩Predictk(r) = /0

If there exists k ≥ 1 such that G is an LL(k) context-free grammar, then G is an LL
context-free grammar. ut

PREPRIN
T

9.1 Definitions 96

Next, we move to the definition of LL one-sided random context grammars. To
simplify this definition, we first introduce the notion of leftmost applicability. In-
formally, a random context rule r is leftmost-applicable to a sentential form y if the
leftmost nonterminal in y can be rewritten by applying r.

Definition 9.1.3. Let G= (N, T , PL, PR, S) be a one-sided random context grammar.
A rule (A→ x,U,W)∈PL∪PR is leftmost-applicable to y∈V ∗ if and only if y= uAv,
where u ∈ T ∗ and v ∈V ∗, and

(A→ x,U,W) ∈ PL,U ⊆ alph(u) and W ∩ alph(u) = /0

or
(A→ x,U,W) ∈ PR,U ⊆ alph(v) and W ∩ alph(v) = /0 ut

Let us note that the leftmost property of the direct derivation relation has signif-
icant consequences to the applicability of rules from PL. We point out these conse-
quences later in Lemma 9.3.1.

By analogy with the Predict set in context-free grammars, we introduce such a
set to one-sided random context grammars. It is then used to define LL one-sided
random context grammars. Notice that as opposed to context-free grammars, in the
current sentential form, the applicability of a random context rule (A→ x,U,W) de-
pends not only on the presence of A but also on the presence and absence of symbols
from U and W , respectively. This has to be properly reflected in the definition.

Definition 9.1.4. Let G = (N, T , PL, PR, S) be a one-sided random context grammar
and $ /∈ N∪T be a symbol. For every r = (A→ x,U,W) ∈ PL∪PR and k≥ 1, define

Predictk(r)⊆ T ∗{$}∗

as follows: γ ∈ Predictk(r) if and only if |γ|= k and

S$k ⇒1 ∗
lm G uAv$k ⇒1lm G uxv$k ⇒1 ∗

lm G uγw

where u ∈ T ∗, v,x ∈V ∗, w ∈V ∗{$}∗, and r is leftmost-applicable to uAv. ut

Making use of the above definition, we next define LL one-sided random context
grammars.

Definition 9.1.5. Let G = (N, T , PL, PR, S) be a one-sided random context gram-
mar. G is an LL(k) one-sided random context grammar, where k ≥ 1, if it satisfies
the following condition: for any p = (A→ x,U,W),r = (A→ x′,U ′,W ′) ∈ PL∪PR
such that p 6= r, if Predictk(p)∩Predictk(r) 6= /0, then there is no w ∈ V ∗ such that
S ⇒1 ∗

lm G w with both p and r being leftmost-applicable to w.
If there exists k ≥ 1 such that G is an LL(k) one-sided random context grammar,

then G is an LL one-sided random context grammar. ut

PREPRIN
T

9.3 Generative Power 97

9.2 A Motivational Example

In this short section, we give an example of an LL(k) one-sided random context
grammar, for every k ≥ 1. In this example, we argue that LL(k) one-sided random
context grammars can describe some languages more succinctly than LL(k) context-
free grammars.

Example 9.2.1. Let k be a positive integer and G = (N, T , /0, PR, S) be a one-sided
random context grammar, where N = {S}, T = {a,b,c,d}, and

PR =
{
(S→ dk−1c, /0, /0),(S→ dk−1aSS, /0,{S}),(S→ dk−1bS,{S}, /0)

}
Notice that G is an LL(k) one-sided random context grammar. Observe that the sec-
ond rule can be applied only to a sentential form containing exactly one occurrence
of S, while the third rule can be applied only to a sentential form containing at
least two occurrences of S. The generated language L(G) can be described by the
following expression (

dk−1a(dk−1b)∗dk−1c
)∗dk−1c

Next, we argue that L(G) cannot be generated by any LL(k) context-free grammar
having a single nonterminal and at most three rules. This shows us that for some
languages, LL(k) one-sided random context grammars need fewer rules or nonter-
minals than LL(k) context-free grammars do to describe them.

We proceed by contradiction. Suppose that there exists an LL(k) context-free
grammar

H =
(
{S},T,P′,S

)
such that L(H) = L(G) and card(P′) ≤ 3. Observe that since there is only a single
nonterminal, to satisfy the LL(k) property, the right-hand side of each rule in P′

has to start with a string of terminals. Furthermore, since there is only a single
nonterminal and all the strings in L(G) begin with either dk−1a or dk−1c, each rule
has to begin with dk−1a or dk−1c. Therefore, to satisfy the LL(k) property, there
can be at most two rules. However, then at least one of these rules has to have
b somewhere on its right-hand side, so the number of occurrences of b depends
on the number of occurrences of a or c. Thus, L(H) 6= L(G), which contradicts
L(H) = L(G). Hence, there is no LL(k) context-free grammar that generates L(G)
with only a single nonterminal and at most three rules. ut

9.3 Generative Power

In this section, we prove that LL one-sided random context grammars characterize
the family of LL context-free languages.

PREPRIN
T

9.3 Generative Power 98

First, we establish a normal form for LL one-sided random context grammars,
which greatly simplifies the proof of the subsequent Lemma 9.3.2. In this normal
form, an LL one-sided random context grammar does not have any left random
context rules.

Lemma 9.3.1. For every LL(k) one-sided random context grammar G, where k≥ 1,
there is an LL(k) one-sided random context grammar H = (N, T , /0, PR, S) such that
L(H) = L(G).

Proof. Let H = (N, T , PL, PR, S) be an LL(k) one-sided random context grammar,
where k ≥ 1. Construct the one-sided random context grammar

H =
(
N,T, /0,P′R,S

)
where

P′R = PR∪
{
(A→ x, /0, /0) | (A→ x, /0,W) ∈ PL

}
Notice that rules from PL are simulated by right random context rules from P′R. In
a greater detail, let r = (A→ x,U,W) ∈ PL. Observe that if U 6= /0, then r is never
applicable in G, so if this is the case, we do not add a rule corresponding to r to P′R.
Furthermore, observe that we do not have to check the absence of nonterminals
from W because there are no nonterminals to the left of the leftmost nonterminal in
any sentential form.

Clearly, L(H) = L(G) and H is an LL(k) one-sided random context grammar.
Hence, the lemma holds. ut

To establish the equivalence between LL(k) one-sided random context grammars
and LL(k) context-free grammars, we first show how to transform any LL(k) one-
sided random context grammar into an equivalent LL(k) context-free grammar. Our
transformation is based on the construction used in the proof of Lemma 7.1.3.

Let G be a one-sided random context grammar. By analogy with rule labels in
phrase-structure grammars (see page 10), in the remainder of this chapter, we write
x⇒G y [r] to denote that in this derivation step, rule r was used.

Lemma 9.3.2. For every LL(k) one-sided random context grammar G, where k≥ 1,
there is an LL(k) context-free grammar H such that L(H) = L(G).

Proof. Let G = (N, T , PL, PR, S) be an LL(k) one-sided random context grammar,
where k≥ 1. Without any loss of generality, making use of Lemma 9.3.1, we assume
that PL = /0. In what follows, angle brackets 〈 and 〉 are used to incorporate more
symbols into a single compound symbol. Construct the context-free grammar

H =
(
N′,T,P′,〈S, /0〉

)
in the following way. Initially, set

PREPRIN
T

9.3 Generative Power 99

N′ =
{
〈A,Q〉 | A ∈ N,Q⊆ N

}
and P′ = /0. Without any loss of generality, we assume that N′∩ (N ∪T) = /0. Next,
for each

(A→ y0Y1y1Y2y2 · · ·Yhyh,U,W) ∈ PR

where yi ∈ T ∗, Y j ∈ N, for all i and j, 0≤ i≤ h, 1≤ j ≤ h, for some h≥ 0, and for
each 〈A,Q〉 ∈ N′ such that U ⊆ Q and W ∩Q = /0, extend P′ by adding

〈A,Q〉 → y0〈Y1,Q∪{Y2,Y3, . . . ,Yh}〉y1
〈Y2,Q∪{Y3, . . . ,Yh}〉y2

...
〈Yh,Q〉yh

Before proving that L(H) = L(G), let us give an insight into the construction.
As G always rewrites the leftmost occurrence of a nonterminal, we use compound
nonterminals of the form 〈A,Q〉 in H, where A is a nonterminal, and Q is a set of
nonterminals that appear to the right of this occurrence of A. When simulating rules
from PR, the check for the presence and absence of symbols is accomplished by
using Q. Also, when rewriting A in 〈A,Q〉 to some y, the compound nonterminals
from N′ are generated instead of nonterminals from N.

To establish the identity L(H) = L(G), we prove two claims. First, Claim 1
shows how derivations of G are simulated by H. Then, Claim 2 demonstrates the
converse—that is, it shows how G simulates derivations of H.

Set V = N ∪T and V ′ = N′∪T . Define the homomorphism τ from V ′∗ to V ∗ as
τ(〈A,Q〉) = A for all A ∈ N and Q⊆ N, and τ(a) = a for all a ∈ T .

Claim 1. If S ⇒1 m
lm G x, where x∈V ∗ and m≥ 0, then 〈S, /0〉 ⇒∗lm H x′, where τ(x′) = x

and x′ is of the form

x′ = x0〈X1,{X2,X3, . . . ,Xn}〉x1〈X2,{X3, . . . ,Xn}〉x2 · · · 〈Xn, /0〉xn

where Xi ∈ N for i = 1,2, . . . ,n and x j ∈ T ∗ for j = 0,1, . . . ,n, for some n≥ 0.

Proof. This claim is established by induction on m≥ 0.

Basis. Let m = 0. Then, for S ⇒1 0
lm G S, 〈S, /0〉 ⇒0

lm H 〈S, /0〉, so the basis holds.

Induction Hypothesis. Suppose that there exists m≥ 0 such that the claim holds for
all derivations of length `, where 0≤ `≤ m.

Induction Step. Consider any derivation of the form

S ⇒1 m+1
lm G w

where w ∈V ∗. Since m+1≥ 1, this derivation can be expressed as

PREPRIN
T

9.3 Generative Power 100

S ⇒1 m
lm G x ⇒1lm G w [r]

for some x ∈ V+ and r ∈ PR. By the induction hypothesis, 〈S, /0〉 ⇒∗lm H x′, where
τ(x′) = x and x′ is of the form

x′ = x0〈X1,{X2,X3, . . . ,Xn}〉x1〈X2,{X3, . . . ,Xn}〉x2 · · · 〈Xn, /0〉xn

where Xi ∈ N for i = 1,2, . . . ,n and x j ∈ T ∗ for j = 0,1, . . . ,n, for some n ≥ 1. As
x ⇒1lm G w [r], x = x0X1x1X2x2 · · ·Xnxn, r = (X1→ y,U,W), U ⊆ {X2, X3, . . . , Xn},
W ∩{X2, X3, . . . , Xn} = /0, and w = x0yx1X2x2 · · ·Xnxn. By the construction of H,
there is

r′ =
(
〈X1,{X2,X3, . . . ,Xn}〉 → y′

)
∈ P′

where τ(y′) = y. Then,

x′ ⇒lm H x0y′x1〈X2,{X3, . . . ,Xn}〉x2 · · · 〈Xn, /0〉xn [r′]

Since w′= x0y′x1〈X2,{X3, . . . ,Xn}〉x2 · · · 〈Xn, /0〉xn is of the required form and, more-
over, τ(w′) = w, the induction step is completed. ut

Claim 2. If 〈S, /0〉 ⇒m
lm H x, where x ∈ V ′∗ and m ≥ 0, then S ⇒1 ∗

lm G τ(x) and x is of
the form

x0〈X1,{X2,X3, . . . ,Xn}〉x1〈X2,{X3, . . . ,Xn}〉x2 · · · 〈Xn, /0〉xn

where Xi ∈ N for i = 1,2, . . . ,n and x j ∈ T ∗ for j = 0,1, . . . ,n, for some n≥ 0.

Proof. This claim is established by induction on m≥ 0.

Basis. Let m = 0. Then, for 〈S, /0〉 ⇒0
lm H 〈S, /0〉, S ⇒1 0

lm G S, so the basis holds.

Induction Hypothesis. Suppose that there exists m≥ 0 such that the claim holds for
all derivations of length `, where 0≤ `≤ m.

Induction Step. Consider any derivation of the form

〈S, /0〉 ⇒m+1
lm H w

where w ∈V ′∗. Since m+1≥ 1, this derivation can be expressed as

〈S, /0〉 ⇒m
lm H x ⇒lm H w [r′]

for some x ∈V+ and r′ ∈ P′. By the induction hypothesis, S ⇒1 ∗
lm G τ(x) and x is of

the form

x0〈X1,{X2,X3, . . . ,Xn}〉x1〈X2,{X3, . . . ,Xn}〉x2 · · · 〈Xn, /0〉xn

PREPRIN
T

9.3 Generative Power 101

where Xi ∈ N for i = 1,2, . . . ,n and x j ∈ T ∗ for j = 0,1, . . . ,n, for some n ≥ 0. As
x ⇒lm H w [r′],

r′ = (〈X1,{X2,X3, . . . ,Xn}〉 → y′) ∈ P′

where y′ ∈V ′∗, and there is r = (X1→ y,U,W) ∈ PR, where U ⊆ {X2, X3, . . . , Xn},
W ∩{X2, X3, . . . , Xn}= /0, and τ(y′) = y. Then,

x0X1x1X2x2 · · ·Xnxn ⇒1lm G x0yx1X2x2 · · ·Xnxn [r]

Since x0yx1X2x2 · · ·Xnxn is of the required form and it equals τ(w), the induction
step is completed. ut

Consider Claim 1 for x ∈ T ∗. Then, S ⇒1 ∗
lm G x implies that S ⇒∗lm H x, so L(G)⊆

L(H). Consider Claim 2 for x ∈ T ∗. Then, 〈S, /0〉 ⇒∗lm H x implies that S ⇒1 ∗
lm G x, so

L(H)⊆ L(G). Hence, L(H) = L(G).
Finally, we argue that H is an LL(k) context-free grammar. To simplify the argu-

mentation, we establish another claim. It represents a slight modification of Claim 2.
Let $ /∈V ′∪V be an end-marker.

Claim 3. If 〈S, /0〉$k ⇒m
lm H x$k, where x ∈V ′∗ and m≥ 0, then S$k ⇒1 ∗

lm G τ(x)$k and
x is of the form specified in Claim 2.

Proof. This claim can be established by analogy with the proof of Claim 2, so we
leave its proof to the reader. ut

For the sake of contradiction, suppose that H is not an LL(k) context-free
grammar—that is, assume that there are p′ = (X → y1) ∈ P′ and r′ = (X →
y2) ∈ P′ such that y1 6= y2 and Predictk(p) ∩ Predictk(r) 6= /0. Let γ be a string
from Predictk(p′)∩ Predictk(r′). By the construction of P′, X = 〈A,Q〉, for some
A ∈ N and Q ⊆ N, and there are p = (A → τ(y1),U1,W1) ∈ PR and r = (A →
τ(y2),U2,W2) ∈ PR such that U1 ⊆ Q, U2 ⊆ Q, W1∩Q = /0, and W2∩Q = /0. Since
γ ∈ Predictk(p′)∩Predictk(r′),

〈S, /0〉$k ⇒∗lm H u〈A,Q〉v$k ⇒lm H uy1v$k [p′] ⇒∗lm H uγw1

and
〈S, /0〉$k ⇒∗lm H u〈A,Q〉v$k ⇒lm H uy2v$k [r′] ⇒∗lm H uγw2

for some u ∈ T ∗, v ∈ V ′∗ such that alph(τ(v)) = Q (see Claim 3), and γ,w1,w2 ∈
V ′∗{$}∗. Then, by Claim 3,

S$k ⇒1 ∗
lm G uAτ(v)$k ⇒1lm G uτ(y1v)$k [p] ⇒1 ∗

lm G uγτ(w1)

and
S$k ⇒1 ∗

lm G uAτ(v)$k ⇒1lm G uτ(y1v)$k [r] ⇒1 ∗
lm G uγτ(w2)

PREPRIN
T

9.3 Generative Power 102

However, by Definition 9.1.4, γ ∈ Predictk(p) and γ ∈ Predictk(r), so

Predictk(p)∩Predictk(r) 6= /0

Since both p and r have the same left-hand side and since both are leftmost-
applicable to uAτ(v), we have a contradiction with the fact that G is an LL(k)
one-sided random context grammar. Hence, H is an LL(k) context-free grammar,
and the lemma holds. ut

Next, we show how to transform any LL(k) context-free grammar into an equiv-
alent LL(k) one-sided random context grammar, for every k ≥ 1.

Lemma 9.3.3. For every LL(k) context-free grammar G, where k ≥ 1, there is an
LL(k) one-sided random context grammar H such that L(H) = L(G).

Proof. Let G = (N, T , P, S) be an LL(k) context-free grammar, where k ≥ 1. Then,
the one-sided random context grammar H = (N, T , P′, /0, S), where

P′ =
{
(A→ x, /0, /0) | A→ x ∈ P

}
is clearly an LL(k) one-sided random context grammar that satisfies L(H) = L(G).
Hence, the lemma holds. ut

For every k≥ 1, let LL -CF(k) and LL -ORC(k) denote the families of languages
generated by LL(k) context-free grammars and LL(k) one-sided random context
grammars, respectively.

The following theorem represents the main result of this chapter.

Theorem 9.3.4. LL -ORC(k) = LL -CF(k) for k ≥ 1.

Proof. This theorem follows from Lemmas 9.3.2 and 9.3.3. ut

Define the language families LL -CF and LL -ORC as

LL -CF =
⋃
k≥1

LL -CF(k)

LL -ORC =
⋃
k≥1

LL -ORC(k)

From Theorem 9.3.4, we obtain the following corollary.

Corollary 9.3.5. LL -ORC = LL -CF ut

We conclude this chapter by proposing three open problem areas as suggested
topics of future investigations related to the topic of the present chapter.

PREPRIN
T

9.3 Generative Power 103

Open Problem 9.3.6. Is the LL property of LL one-sided random context gram-
mars decidable? Reconsider the construction in the proof of Lemma 9.3.2. Since it
is decidable whether a given context-free grammar is an LL context-free grammar
(see [2]), we might try to convert a one-sided random context grammar G into a
context-free grammar H, and show that G is an LL one-sided random context gram-
mar if and only if H is an LL context-free grammar. The only-if part of this equiv-
alence follows from Lemma 9.3.2. However, the if part does not hold. Indeed, we
give an example of a one-sided random context grammar that is not LL, but which
the construction in the proof of Lemma 9.3.2 turns into a context-free grammar that
is LL. Consider the one-sided random context grammar

G =
(
{S,F1,F2},{a}, /0,PR,S

)
where

PR =
{
(S→ a, /0,{F1}),(S→ a, /0,{F2})

}
Clearly, G is not an LL one-sided random context grammar. However, observe that
the construction converts G into the LL context-free grammar

H =
(
N,{a},P′,〈S, /0〉

)
where P′ contains 〈S, /0〉 → a (other rules are never applicable so we do not list
them here). Hence, the construction used in the proof of Lemma 9.3.2 cannot be
straightforwardly used for deciding the LL property of one-sided random context
grammars. ut

Open Problem 9.3.7. Reconsider the proof of Lemma 9.3.2. Observe that for a sin-
gle right random context rule from PR, the construction introduces several rules
to P′, depending on the number of nonterminals of G. Hence, H contains many
more rules than G. Obviously, we may eliminate all useless nonterminals and rules
from H by using standard methods. However, does an elimination like this always
result into the most economical context-free grammar? In other words, is there an
algorithm which, given G, finds an equivalent LL(k) context-free grammar H such
that there is no other equivalent LL(k) context-free grammar with fewer nontermi-
nals or rules than H has? ut

Open Problem 9.3.8. Given an LL(k) context-free grammar G, where k ≥ 1, is
there an algorithm which converts G into an equivalent LL(k) one-sided random
context grammar that contains fewer rules than G? ut

PREPRIN
T

Part III
Conclusion

This final part of the present thesis closes its discussion by adding remarks regard-
ing its coverage. Most of these remarks concern application perspectives and open
problem areas. The historical development of the discussed types of regulated gram-
mars is described as well, and this description includes many relevant bibliographic
comments and references.

This part consists of a single Chapter 10, which discusses all the above-mentioned
topics.

PREPRIN
T

Chapter 10
Concluding Remarks

This concluding chapter makes several final remarks concerning the material cov-
ered in this thesis with a special focus on its future developments. First, it suggests
application perspectives of one-sided random context grammars (Section 10.1).
Then, it chronologically summarizes the concepts and results achieved in most sig-
nificant studies on the subject of the present thesis (Section 10.2). Finally, this chap-
ter lists the most important open problems resulting from the study of this thesis
(Section 10.3).

10.1 Application Perspectives

As already stated in Chapter 1, this thesis is primarily and principally meant as a the-
oretical treatment of one-sided random context grammars. Nevertheless, to demon-
strate their possible practical importance, we make some general remarks regarding
their applications in the present section.

Taking the definition and properties of one-sided random context grammars into
account, we see that they are suitable to underly information processing based on
the existence or absence of some information parts. Therefore, in what follows, we
pay major attention to this application area.

Molecular Genetics

We believe that one-sided random context grammars can formally and elegantly
simulate processing information in molecular genetics, including information con-
cerning macromolecules, such as DNA, RNA, and polypeptides. For instance, con-
sider an organism consisting of DNA molecules made by enzymes. It is a common
phenomenon that a molecule m made by a specific enzyme can be modified unless
molecules made by some other enzymes occur either to the left or to the right of m

105

PREPRIN
T

10.1 Application Perspectives 106

in the organism. Consider a string w that formalizes this organism so every molecule
is represented by a symbol. As obvious, to simulate a change of the symbol a that
represents m requires random context occurrences of some symbols that either pre-
cede or follow a in w. As obvious, one-sided random context grammars can provide
a string-changing formalism that can capture this random context requirement in
a very succinct and elegant way. To put it more generally, one-sided random con-
text grammars can simulate the behavior of molecular organisms in a rigorous and
uniform way.

Computer Science

Considering that one-sided random context grammars have a greater power than
context-free grammars, we may immediately think of applying them in terms of
syntax analysis of complicated non-context-free structures during language trans-
lation. However, as one-sided random context grammars are computationally com-
plete (see Theorem 4.1.4), Rice’s theorem (see Section 9.3.3 in [37]) implies that
we cannot use them to parse all recursively enumerable languages. Therefore, we
should focus on variants of one-sided random context grammars that are not com-
putationally complete, such as propagating one-sided random context grammars.

In Chapter 9, we have studied LL versions of one-sided random context gram-
mars, which may be suitable for syntax analysis. Even though they are equally
powerful as context-free grammars (see Corollary 9.3.5), they still may be useful
since for some languages, they can describe languages in a more economical way
(see Section 9.2).

Linguistics

In terms of linguistics, one-sided random context grammars may be used for gen-
erating or verifying that the given texts contain no forbidding passages, such as
vulgarisms or classified information. More specifically, generalized one-sided for-
bidding grammars (see Chapter 8), which are one-sided forbidding grammars that
can forbid the occurrences of strings, are suitable to formally capture such applica-
tions.

Another application area of one-sided random context grammars may be syntax-
oriented linguistics. Observe that many common English sentences contain expres-
sions and words that mutually depend on each other although they are not adjacent
to each other in the sentences. For example, consider the following sentence: He
sometimes goes to bed very late. The subject (he) and the predicator (goes) are re-
lated. Therefore, we cannot rewrite goes to go because of the subject. One-sided

PREPRIN
T

10.2 Bibliographical and Historical Remarks 107

random context grammars form a suitable formalism to capture and verify such
dependencies.

Application-oriented topics like the ones outlined in this section obviously represent
a future investigation area concerning one-sided random context grammars.

10.2 Bibliographical and Historical Remarks

This section gives an overview of the crucially important studies published on the
subject of this thesis from a historical perspective. As this thesis represents pri-
marily a theoretically oriented treatment, we concentrate our attention primarily on
theoretical studies.

For a summary of the fundamental knowledge about regulated grammars pub-
lished by 1989, consult [16]. Furthermore, Chapter 13 of [54] and Chapter 3
of [99] give a brief overview of recent results concerning regulated grammars. The
book [79] summarizes recent results concerning various transformations of regu-
lated grammars. More specifically, it concentrates its attention on algorithms that
transform these grammars and some related regulated language-defining models so
the resulting transformed models are equivalent and, in addition, satisfy some pre-
scribed properties. Finally and most importantly, [87] gives an up-to-date overview
of both classical and very recent results concerning regulated grammars and au-
tomata.

Random context grammars were introduced in [106]. Strictly speaking, in [106],
their definition coincides with the definition of permitting grammars in this thesis.
Forbidding grammars, also known as N-grammars (see [92]), together with other
variants of random context grammars were originally studied by Lomkovskaya
in [48–50]. After these studies, many more papers discussed these grammars, in-
cluding [3, 18–21, 56, 77, 111]. Generalized forbidding grammars were introduced
in [66] and further investigated in [60, 76, 77]. In [15, 58, 63], simplified versions
of random context grammars, called restricted context-free grammars, were stud-
ied. Finally, [10, 31, 47, 57] studied grammar systems with their components repre-
sented by random context grammars.

Selective substitution grammars were introduced in [95] and further studied in
many papers, including [17, 32–34, 39–45, 96, 102, 103].

Originally, scattered context grammars were defined in [35]. Their original ver-
sion disallowed erasing rules, however. Four years later, [105] generalized them
to scattered context grammars with erasing rules (see also [67]). For an in-depth
overview of scattered context grammars and their applications, consult [73] and the
references given therein.

PREPRIN
T

10.3 Open Problem Areas 108

One-sided random context grammars were introduced in [80]. Their special
variants, left permitting and left forbidding grammars, were originally introduced
in [10] and [31], respectively. The generative power of one-sided forbidding gram-
mars and their relation to selective substitution grammars were studied in [82]. The
nonterminal complexity of one-sided random context grammars was investigated
in [81]. A reduction of the number of right random context rules was the topic
of [86]. Several normal forms of these grammars were established in [109]. Left-
most derivations were studied in [83]. The generalized version of one-sided forbid-
ding grammars was introduced and investigated in [84]. A list of open problems
concerning these grammars appears in [110]. Finally, the LL versions of one-sided
random context grammars are based on [74] and appear in this thesis for the first
time.

One-sided random context grammars are based upon context-free grammars. It is
only natural to consider other types of grammars and equip them with one-sided ran-
dom context. Some preliminary results in this direction have been achieved in [85],
where ET0L grammars (see [97]) and their variants enhanced with left random con-
text were studied. Their nonterminal complexity was investigated in [108]. An im-
provement of the result achieved in [108] appears in Section 10.4 of [87].

10.3 Open Problem Areas

Throughout this thesis, we have already formulated many open problems. Out of
them, we next select and repeat the most important questions, which deserve our
special attention. To see their significance completely, however, we suggest that the
reader returns to the referenced parts of the thesis in order to view these questions
in the full context of their formulation and discussion in detail.

(I) What is the generative power of left random context grammars? What is the role
of erasing rules in this left variant? That is, are left random context grammars
more powerful than propagating left random context grammars?

(II) What is the generative power of one-sided forbidding grammars? We only know
that they are equally powerful as selective substitution grammars (see Theo-
rems 4.2.3 and 4.2.4). Thus, by establishing the generative power of one-sided
forbidding grammars, we would establish the power of selective substitution
grammars, too.

(III) By Theorem 6.1.1, ten nonterminals suffice to generate any recursively enumer-
able language by a one-sided random context grammar. Is this limit optimal? In
other words, can Theorem 6.1.1 be improved?

(IV) Recall that propagating one-sided random context grammars characterize the
family of context-sensitive languages (see Theorem 4.1.3). Can we also limit

PREPRIN
T

10.3 Open Problem Areas 109

the overall number of nonterminals in terms of this propagating version like in
Theorem 6.1.1?

(V) What is the generative power of one-sided forbidding grammars and one-sided
permitting grammars? Moreover, what is the power of left permitting gram-
mars? Recall that every propagating scattered context grammar can be turned
to an equivalent context-sensitive grammar (see Theorem 3.21 in [73]), but it is
a longstanding open problem whether these two kinds of grammars are actually
equivalent—the PSC = CS problem. If in the future one proves that propagat-
ing one-sided permitting grammars and propagating one-sided random context
grammars are equivalent, then so are propagating scattered context grammars
and context-sensitive grammars (see Theorem 4.3.3), so the PSC = CS problem
would be solved.

(VI) By Theorem 6.2.5, any recursively enumerable language is generated by a one-
sided random context grammar having no more than two right random context
nonterminals. Does this result hold with one or even zero right random context
nonterminals? Notice that by proving that no right random context nontermi-
nals are needed, we would establish the generative power of left random context
grammars.

(VII) By Theorem 6.3.1, any recursively enumerable language is generated by a one-
sided random context grammar having no more than two right random context
rules. Does this result hold with one or even zero right random context rules?
Again, notice that by proving that no right random context rules are needed, we
would establish the generative power of left random context grammars.

PREPRIN
T

References

[1] Aho, A.V., Lam, M.S., Sethi, R., Ullman, J.D.: Compilers: Principles, Tech-
niques, and Tools, 2nd edn. Addison-Wesley, Boston (2006)

[2] Aho, A.V., Ullman, J.D.: The Theory of Parsing, Translation and Compiling,
Volume I: Parsing. Prentice-Hall, New Jersey (1972)

[3] Atcheson, B., Ewert, S., Shell, D.: A note on the generative capacity of ran-
dom context. South African Computer Journal 36, 95–98 (2006)

[4] Baker, B.S.: Non-context-free grammars generating context-free languages.
Information and Control 24(3), 231–246 (1974)

[5] Cannon, R.L.: Phrase structure grammars generating context-free languages.
Information and Control 29(3), 252–267 (1975)

[6] Chomsky, N.: Three models for the description of language. IRE Transac-
tions on Information Theory 2(3), 113–124 (1956)

[7] Chomsky, N.: On certain formal properties of grammars. Information and
Control 2, 137–167 (1959)

[8] Cojocaru, L., Mäkinen, E.: On the complexity of Szilard languages of regu-
lated grammars. Tech. rep., Department of Computer Sciences, University of
Tampere, Tampere, Finland (2010)

[9] Cremers, A.B., Maurer, H.A., Mayer, O.: A note on leftmost restricted ran-
dom context grammars. Information Processing Letters 2(2), 31–33 (1973)

[10] Csuhaj-Varjú, E., Masopust, T., Vaszil, G.: Cooperating distributed grammar
systems with permitting grammars as components. Romanian Journal of In-
formation Science and Technology 12(2), 175–189 (2009)

[11] Csuhaj-Varjú, E., Vaszil, G.: Scattered context grammars generate any recur-
sively enumerable language with two nonterminals. Information Processing
Letters 110(20), 902–907 (2010)

[12] Cytron, R., Fischer, C., LeBlanc, R.: Crafting a Compiler. Addison-Wesley,
Boston (2009)

110

PREPRIN
T

References 111

[13] Czeizler, E., Czeizler, E., Kari, L., Salomaa, K.: On the descriptional com-
plexity of Watson-Crick automata. Theoretical Computer Science 410(35),
3250–3260 (2009)

[14] Dassow, J., Fernau, H., Păun, G.: On the leftmost derivation in matrix gram-
mars. International Journal of Foundations of Computer Science 10(1), 61–
80 (1999)

[15] Dassow, J., Masopust, T.: On restricted context-free grammars. Journal of
Computer and System Sciences 78(1), 293–304 (2012)

[16] Dassow, J., Păun, G.: Regulated Rewriting in Formal Language Theory.
Springer, New York (1989)

[17] Ehrenfeucht, A., Kleijn, H.C.M., Rozenberg, G.: Adding global forbidding
context to context-free grammars. Theoretical Computer Science 37, 337–
360 (1985)

[18] Ewert, S., Walt, A.: A shrinking lemma for random forbidding context lan-
guages. Theoretical Computer Science 237(1–2), 149–158 (2000)

[19] Ewert, S., Walt, A.: A pumping lemma for random permitting context lan-
guages. Theoretical Computer Science 270(1–2), 959–967 (2002)

[20] Ewert, S., Walt, A.: The power and limitations of random context. In: Gram-
mars and Automata for String Processing: from Mathematics and Computer
Science to Biology, pp. 33–43. Taylor and Francis (2003)

[21] Ewert, S., Walt, A.: Necessary conditions for subclasses of random context
languages. Theoretical Computer Science 475, 66–72 (2013)

[22] Fernau, H.: Regulated grammars under leftmost derivation. Grammars 3(1),
37–62 (2000)

[23] Fernau, H.: Nonterminal complexity of programmed grammars. Theoretical
Computer Science 296(2), 225–251 (2003)

[24] Fernau, H., Freund, R., Oswald, M., Reinhardt, K.: Refining the nonterminal
complexity of graph-controlled, programmed, and matrix grammars. Journal
of Automata, Languages and Combinatorics 12(1–2), 117–138 (2007)

[25] Fernau, H., Meduna, A.: On the degree of scattered context-sensitivity. The-
oretical Computer Science 290(3), 2121–2124 (2003)

[26] Fernau, H., Meduna, A.: A simultaneous reduction of several measures of
descriptional complexity in scattered context grammars. Information Pro-
cessing Letters 86(5), 235–240 (2003)

[27] Ferretti, C., Mauri, G., Păun, G., Zandron, C.: On three variants of rewriting
P systems. Theoretical Computer Science 301(1–3), 201–215 (2003)

[28] Freund, R., Oswald, M.: P systems with activated/prohibited membrane chan-
nels. In: Membrane Computing, Lecture Notes in Computer Science, vol.
2597, pp. 261–269. Springer Berlin / Heidelberg (2003)

[29] Geffert, V.: Normal forms for phrase-structure grammars. Theoretical Infor-
matics and Applications 25(5), 473–496 (1991)

PREPRIN
T

References 112

[30] Ginsburg, S., Spanier, E.H.: Control sets on grammars. Theory of Computing
Systems 2(2), 159–177 (1968)

[31] Goldefus, F., Masopust, T., Meduna, A.: Left-forbidding cooperating dis-
tributed grammar systems. Theoretical Computer Science 20(3), 1–11 (2010)

[32] Gonczarowski, J., Kleijn, H.C.M., Rozenberg, G.: Closure properties of se-
lective substitution grammars (part I). International Journal of Computer
Mathematics 14, 19–42 (1983)

[33] Gonczarowski, J., Kleijn, H.C.M., Rozenberg, G.: Closure properties of se-
lective substitution grammars (part II). International Journal of Computer
Mathematics 14, 109–135 (1983)

[34] Gonczarowski, J., Kleijn, H.C.M., Rozenberg, G.: Grammatical construc-
tions in selective substitution grammars. Acta Cybernetica 6, 239–269 (1984)

[35] Greibach, S.A., Hopcroft, J.E.: Scattered context grammars. Journal of Com-
puter and System Sciences 3(3), 233–247 (1969)

[36] Holzer, M., Kutrib, M.: Nondeterministic finite automata—recent results on
the descriptional and computational complexity. In: Implementation and Ap-
plications of Automata, Lecture Notes in Computer Science, vol. 5148, pp.
1–16. Springer (2008)

[37] Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory,
Languages, and Computation, 3rd edn. Addison-Wesley, Boston (2006)

[38] Kasai, T.: An hierarchy between context-free and context-sensitive lan-
guages. Journal of Computer and System Sciences 4, 492–508 (1970)

[39] Kleijn, H.C.M.: Selective substitution grammars based on context-free pro-
ductions. Ph.D. thesis, Leiden University, Netherlands (1983)

[40] Kleijn, H.C.M.: Basic ideas of selective substitution grammars. In: Trends,
Techniques, and Problems in Theoretical Computer Science, Lecture Notes
in Computer Science, vol. 281, pp. 75–95. Springer (1987)

[41] Kleijn, H.C.M., Rozenberg, G.: Context-free like restrictions on selective
rewriting. Theoretical Computer Science 16, 237–269 (1981)

[42] Kleijn, H.C.M., Rozenberg, G.: A general framework for comparing sequen-
tial and parallel rewriting. In: Mathematical Foundations of Computer Sci-
ence, pp. 360–368 (1981)

[43] Kleijn, H.C.M., Rozenberg, G.: On the role of selectors in selective substi-
tution grammars. In: Fundamentals of Computation Theory, vol. 117, pp.
190–198 (1981)

[44] Kleijn, H.C.M., Rozenberg, G.: Sequential, continuous and parallel gram-
mars. Information and Control 48(3), 221–260 (1981)

[45] Kleijn, H.C.M., Rozenberg, G.: On the generative power of regular pattern
grammars. Acta Informatica 20, 391–411 (1983)

[46] Kuroda, S.Y.: Classes of languages and linear-bounded automata. Informa-
tion and Control 7(2), 207–223 (1964)

PREPRIN
T

References 113

[47] Křivka, Z., Masopust, T.: Cooperating distributed grammar systems with ran-
dom context grammars as components. Acta Cybernetica 20(2), 269–283
(2011)

[48] Lomkovskaya, M.V.: Conditional grammars and intermediate classes of lan-
guages (in Russian). Soviet Mathematics – Doklady 207, 781–784 (1972)

[49] Lomkovskaya, M.V.: On c-conditional and other commutative grammars (in
Russian). Nauchno-Tekhnicheskaya Informatsiya 2(2), 28–31 (1972)

[50] Lomkovskaya, M.V.: On some properties of c-conditional grammars (in Rus-
sian). Nauchno-Tekhnicheskaya Informatsiya 2(1), 16–21 (1972)

[51] Lukáš, R., Meduna, A.: Multigenerative grammar systems. Schedae Infor-
maticae 2006(15), 175–188 (2006)

[52] Luker, M.: A generalization of leftmost derivations. Theory of Computing
Systems 11(1), 317–325 (1977)

[53] Madhu, M.: Descriptional complexity of rewriting P systems. Journal of
Automata, Languages and Combinatorics 9(2–3), 311–316 (2004)

[54] Martín-Vide, C., Mitrana, V., Păun, G. (eds.): Formal Languages and Appli-
cations. Springer, Berlin (2004)

[55] Masopust, T.: Descriptional complexity of multi-parallel grammars. Infor-
mation Processing Letters 108(2), 68–70 (2008)

[56] Masopust, T.: On the descriptional complexity of scattered context grammars.
Theoretical Computer Science 410(1), 108–112 (2009)

[57] Masopust, T.: On the terminating derivation mode in cooperating distributed
grammar systems with forbidding components. International Journal of
Foundations of Computer Science 20(2), 331–340 (2009)

[58] Masopust, T.: Simple restriction in context-free rewriting. Journal of Com-
puter and System Sciences 76(8), 837–846 (2010)

[59] Masopust, T., Meduna, A.: Descriptional complexity of generalized forbid-
ding grammars. In: Proceedings of 9th International Workshop on Descrip-
tional Complexity of Formal Systems, pp. 170–177. University of Pavol Jozef
Šafárik, SK (2007)

[60] Masopust, T., Meduna, A.: Descriptional complexity of grammars regulated
by context conditions. In: LATA ’07 Pre-proceedings. Reports of the Re-
search Group on Mathematical Linguistics 35/07, Universitat Rovira i Virgili,
pp. 403–411 (2007)

[61] Masopust, T., Meduna, A.: On descriptional complexity of partially parallel
grammars. Fundamenta Informaticae 87(3), 407–415 (2008)

[62] Masopust, T., Meduna, A.: Descriptional complexity of three-nonterminal
scattered context grammars: An improvement. In: Proceedings of 11th In-
ternational Workshop on Descriptional Complexity of Formal Systems, pp.
235–245. Otto-von-Guericke-Universität Magdeburg (2009)

PREPRIN
T

References 114

[63] Masopust, T., Meduna, A.: On context-free rewriting with a simple restric-
tion and its computational completeness. RAIRO – Theoretical Informatics
and Applications – Informatique Théorique et Applications 43(2), 365–378
(2009)

[64] Matthews, G.H.: A note on asymmetry in phrase structure grammars. Infor-
mation and Control 7, 360–365 (1964)

[65] Maurer, H.A.: Simple matrix languages with a leftmost restriction. Informa-
tion and Control 23(2), 128–139 (1973)

[66] Meduna, A.: Generalized forbidding grammars. International Journal of
Computer Mathematics 36(1-2), 31–38 (1990)

[67] Meduna, A.: Syntactic complexity of scattered context grammars. Acta In-
formatica 1995(32), 285–298 (1995)

[68] Meduna, A.: On the number of nonterminals in matrix grammars with left-
most derivations. In: New Trends in Formal Languages — Control, Coop-
eration, and Combinatorics (to Jürgen Dassow on the occasion of his 50th
birthday), pp. 27–38. Springer, New York (1997)

[69] Meduna, A.: Automata and Languages: Theory and Applications. Springer,
London (2000)

[70] Meduna, A.: Elements of Compiler Design. Auerbach Publications, Boston
(2007)

[71] Meduna, A., Goldefus, F.: Weak leftmost derivations in cooperative dis-
tributed grammar systems. In: 5th Doctoral Workshop on Mathematical and
Engineering Methods in Computer Science, pp. 144–151. Brno University of
Technology, Brno, CZ (2009)

[72] Meduna, A., Techet, J.: Canonical scattered context generators of sentences
with their parses. Theoretical Computer Science 2007(389), 73–81 (2007)

[73] Meduna, A., Techet, J.: Scattered Context Grammars and their Applications.
WIT Press, Southampton (2010)

[74] Meduna, A., Vrábel, L., Zemek, P.: LL one-sided random context grammars.
Unpublished manuscript

[75] Meduna, A., Škrkal, O.: Combined leftmost derivations in matrix grammars.
In: Proceedings of 7th International Conference on Information Systems Im-
plementation and Modelling (ISIM’04), pp. 127–132. Ostrava, CZ (2004)

[76] Meduna, A., Švec, M.: Descriptional complexity of generalized forbidding
grammars. International Journal of Computer Mathematics 80(1), 11–17
(2003)

[77] Meduna, A., Švec, M.: Grammars with Context Conditions and Their Appli-
cations. Wiley, New Jersey (2005)

[78] Meduna, A., Zemek, P.: One-sided random context grammars: A survey. Un-
published manuscript

PREPRIN
T

References 115

[79] Meduna, A., Zemek, P.: Regulated Grammars and Their Transformations.
Faculty of Information Technology, Brno University of Technology, Brno,
CZ (2010)

[80] Meduna, A., Zemek, P.: One-sided random context grammars. Acta Infor-
matica 48(3), 149–163 (2011)

[81] Meduna, A., Zemek, P.: Nonterminal complexity of one-sided random con-
text grammars. Acta Informatica 49(2), 55–68 (2012)

[82] Meduna, A., Zemek, P.: One-sided forbidding grammars and selective sub-
stitution grammars. International Journal of Computer Mathematics 89(5),
586–596 (2012)

[83] Meduna, A., Zemek, P.: One-sided random context grammars with leftmost
derivations. In: LNCS Festschrift Series: Languages Alive, vol. 7300, pp.
160–173. Springer Verlag (2012)

[84] Meduna, A., Zemek, P.: Generalized one-sided forbidding grammars. Inter-
national Journal of Computer Mathematics 90(2), 127–182 (2013)

[85] Meduna, A., Zemek, P.: Left random context ET0L grammars. Fundamenta
Informaticae 123(3), 289–304 (2013)

[86] Meduna, A., Zemek, P.: One-sided random context grammars with a limited
number of right random context rules. Theoretical Computer Science 516(1),
127–132 (2014)

[87] Meduna, A., Zemek, P.: Regulated Grammars and Automata. Springer, New
York (2014)

[88] Mihalache, V.: Matrix grammars versus parallel communicating grammar
systems. In: Mathematical Aspects of Natural and Formal Languages, pp.
293–318. World Scientific Publishing, River Edge (1994)

[89] Mutyam, M., Krithivasan, K.: Tissue P systems with leftmost derivation. Ra-
manujan Mathematical Society Lecture Notes Series 3, 187–196 (2007)

[90] Okubo, F.: A note on the descriptional complexity of semi-conditional gram-
mars. Information Processing Letters 110(1), 36–40 (2009)

[91] Penttonen, M.: One-sided and two-sided context in formal grammars. Infor-
mation and Control 25(4), 371–392 (1974)

[92] Penttonen, M.: ET0L-grammars and N-grammars. Information Processing
Letters 4(1), 11–13 (1975)

[93] Păun, G.: A variant of random context grammars: semi-conditional gram-
mars. Theoretical Computer Science 41(1), 1–17 (1985)

[94] Rosenkrantz, D.J.: Programmed grammars and classes of formal languages.
Journal of the ACM 16(1), 107–131 (1969)

[95] Rozenberg, G.: Selective substitution grammars (towards a framework for
rewriting systems). Part 1: Definitions and examples. Elektronische Informa-
tionsverarbeitung und Kybernetik 13(9), 455–463 (1977)

PREPRIN
T

References 116

[96] Rozenberg, G.: On coordinated selective substitutions: Towards a unified the-
ory of grammars and machines. Theoretical Computer Science 37, 31–50
(1985)

[97] Rozenberg, G., Salomaa, A.: Mathematical Theory of L Systems. Academic
Press, Orlando (1980)

[98] Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages, Vol. 1:
Word, Language, Grammar. Springer, New York (1997)

[99] Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages, Vol. 2:
Linear Modeling: Background and Application. Springer, New York (1997)

[100] Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages, Vol. 3:
Beyond Words. Springer (1997)

[101] Salomaa, A.: Matrix grammars with a leftmost restriction. Information and
Control 20(2), 143–149 (1972)

[102] Siromoney, R., Dare, V.R.: On infinite words obtained by selective substitu-
tion grammars. Theoretical Computer Science 39, 281–295 (1985)

[103] Siromoney, R., Subramanian, K.G.: Selective substitution array grammars.
Information Sciences 25(1), 73–83 (1981)

[104] Vaszil, G.: On the descriptional complexity of some rewriting mechanisms
regulated by context conditions. Theoretical Computer Science 330(2), 361–
373 (2005)

[105] Virkkunen, V.: On scattered context grammars. Acta Universitatis Ouluensis
20(6), 75–82 (1973)

[106] Walt, A.: Random context grammars. In: Proceedings of Symposium on For-
mal Languages, pp. 163–165 (1970)

[107] Wood, D.: Theory of Computation: A Primer. Addison-Wesley, Boston
(1987)

[108] Zemek, P.: On the nonterminal complexity of left random context E0L gram-
mars. In: Proceedings of the 17th Conference STUDENT EEICT 2011,
vol. 3, pp. 510–514. Brno University of Technology, Brno, CZ (2011)

[109] Zemek, P.: Normal forms of one-sided random context grammars. In: Pro-
ceedings of the 18th Conference STUDENT EEICT 2012, vol. 3, pp. 430–
434. Brno University of Technology, Brno, CZ (2012)

[110] Zemek, P.: One-sided random context grammars: Established results and
open problems. In: Proceedings of the 19th Conference STUDENT EEICT
2013, vol. 3, pp. 222–226. Brno University of Technology, Brno, CZ (2013)

[111] Zetzsche, G.: On erasing productions in random context grammars. In:
ICALP’10: Proceedings of the 37th International Colloquium on Automata,
Languages and Programming, pp. 175–186. Springer (2010)

PREPRIN
T

Language Family Index

Family Page Formal model

RE 10 phrase-structure grammar
CS 10 context-sensitive grammar
CF 11 context-free grammar
RC 13 random context grammar
RC−ε 13 propagating random context grammar
For 13 forbidding grammar
For−ε 13 propagating forbidding grammar
Per 13 permitting grammar
Per−ε 13 propagating permitting grammar
S 14 selective substitution grammar
S−ε 14 propagating selective substitution grammar
SC 15 scattered context grammar
SC−ε 15 propagating scattered context grammar
ORC 21 one-sided random context grammar
ORC−ε 21 propagating one-sided random context grammar
OFor 21 one-sided forbidding grammar
OFor−ε 21 propagating one-sided forbidding grammar
OPer 21 one-sided permitting grammar
OPer−ε 21 propagating one-sided permitting grammar
LRC 21 left random context grammar
LRC−ε 21 propagating left random context grammar
LFor 21 left forbidding grammar
LFor−ε 21 propagating left forbidding grammar
LPer 21 left permitting grammar
LPer−ε 21 propagating left permitting grammar
ORC(⇒1lm) 71 one-sided random context grammar using

type-1 leftmost derivations

117

PREPRIN
T

Language Family Index 118

Family Page Formal model

ORC−ε(⇒1lm) 71 propagating one-sided random context grammar using
type-1 leftmost derivations

ORC(⇒2lm) 74 one-sided random context grammar using
type-2 leftmost derivations

ORC−ε(⇒2lm) 74 propagating one-sided random context grammar using
type-2 leftmost derivations

ORC(⇒3lm) 79 one-sided random context grammar using
type-3 leftmost derivations

ORC−ε(⇒3lm) 79 propagating one-sided random context grammar using
type-3 leftmost derivations

RC(⇒1lm) 80 random context grammar using
type-1 leftmost derivations

RC−ε(⇒1lm) 80 propagating random context grammar using
type-1 leftmost derivations

RC(⇒2lm) 80 random context grammar using
type-2 leftmost derivations

RC−ε(⇒2lm) 80 propagating random context grammar using
type-2 leftmost derivations

RC(⇒3lm) 80 random context grammar using
type-3 leftmost derivations

RC−ε(⇒3lm) 80 propagating random context grammar using
type-3 leftmost derivations

GF 92 generalized forbidding grammar
LL -CF 102 LL context-free grammar
LL -ORC 102 LL one-sided random context grammar

PREPRIN
T

Subject Index

activated symbol, 14
alph(), 8
alphabet, 7

of language, 8
of string, 8

automaton, 2

cardinality of set, 7
characterization of language family, 9
Chomsky

hierarchy, 11
normal form, 39

closure
of language, 9
of relation

transitive, 7
transitive-reflexive, 7

concatenation
of languages, 8
of strings, 8

context-free
grammar, 2, 11
language, 11

context-sensitive
grammar, 10
language, 10

definition of language family, 9
degree of generalized one-sided random

context grammar, 84
derivation, 10, 13–15, 18, 83

leftmost, 11

of type-1, 71
of type-2, 73
of type-3, 78

descriptional complexity, 49
difference

of languages, 8
of sets, 7

empty
language, 8
set, 7
string, 7

equally powerful formal models, 9
equivalent formal models, 9
erasing rule, 10

family of languages, 9
fin(), 8
finite

language, 8
substitution, 9

forbidding
context, 13
grammar, 13

generalized, 82

Geffert normal form, 12
generalized

forbidding grammar, 82
one-sided forbidding grammar, 83

generated language, 13, 18, 83
grammar, 2

119

PREPRIN
T

Subject Index 120

context-free, 2, 11
context-sensitive, 10
forbidding, 13
generalized

forbidding, 82
one sided forbidding, 83

left
forbidding, 18
permitting, 18
random context, 18

LL
context-free, 95
one-sided random context, 96

LL(k)
context-free, 95
one-sided, 96

non-context-free, 2
one-sided

forbidding, 18
permitting, 18
random context, 17

permitting, 13
phrase-structure, 9
random context, 13
scattered context, 15
selective substitution, 14
symmetric s-grammar, 35

Greibach
normal form, 39

homomorphism, 9

infinite language, 8
intersection

of languages, 8
of sets, 7

Kleene star, 9

language, 8
context-sensitive, 10
empty, 8
family, 9
finite, 8
generated, 10, 14, 15

using leftmost derivations, 11
recursively enumerable, 10

left
forbidding

context, 17, 83
grammar, 18
rule, 83

permitting
context, 17
grammar, 18

random context
grammar, 18
nonterminal, 56
rule, 17

leftmost derivation, 11
of type-1, 71
of type-2, 73
of type-3, 78

leftmost-applicable rule, 96
length of string, 8
LL

context-free grammar, 95
one-sided random context grammar, 96

LL(k)
context-free grammar, 95
one-sided random context grammar, 96

max-len(), 8

N-grammar, 107
nlrcn(), 56
non-context-free grammar, 2
nonterminal

alphabet, 10, 13, 15, 17, 83
complexity, 49

normal form
Chomsky, 39
Geffert, 12
Greibach, 39
Penttonen, 11

nrrcn(), 56
number

of left random context nonterminals, 56
of right random context nonterminals, 56

PREPRIN
T

Subject Index 121

one-sided
forbidding grammar, 18
permitting grammar, 18
random context grammar, 17

Penttonen normal form, 11
permitting

context, 13
grammar, 13

phrase-structure grammar, 9
positive closure, 9
power

of language, 8
of string, 8
set, 7

Predict(), 95, 96
prefix of string, 8
propagating

forbidding grammar, 13
generalized one-sided forbidding

grammar, 93
left

forbidding grammar, 18
permitting grammar, 18
random context grammar, 18

one-sided
forbidding grammar, 18
permitting grammar, 18
random context grammar, 18

permitting grammar, 13
phrase-structure grammar, 10
random context grammar, 13
scattered context grammar, 15
selective substitution grammar, 14

proper
prefix, 8
subset, 7
suffix, 8

random context
grammar, 13
rule, 13

recursively enumerable language, 10
regulated grammar, 3
restricted context-free grammar, 107
rewriting rule, see rule

right
forbidding

context, 17, 83
rule, 83

permitting context, 17
random context

nonterminal, 56
rule, 17

rule, 10, 14, 15
erasing, 10

s-grammar, see selective substitution
grammar

scattered context grammar, 15
selective substitution grammar, 14
selector, 14
sentence, 10
sentential form, 10
start symbol, 10, 13–15, 17, 83
string, 7
sub(), 8
subset, 7

proper, 7
substitution, 9

finite, 9
substring, 8
successful derivation, 10
suffix of string, 8
symbol, 7

activated, 14
symmetric s-grammar, 35

terminal
alphabet, 10, 13–15, 17, 83
derivation, 10

total alphabet, 10, 13–15, 17, 83
transitive closure, 7
transitive-reflexive closure, 7
type-1 leftmost derivation, 71
type-2 leftmost derivation, 73
type-3 leftmost derivation, 78

union
of languages, 8
of sets, 7

universal language, 8

	Abstract
	Acknowledgements
	Contents
	Part I Introduction and Terminology
	Introduction
	Rudiments of Formal Language Theory
	Mathematical Notation
	Strings and Languages
	Grammars and Language Families

	Part II One-Sided Random Context Grammars
	Definitions and Examples
	Definitions
	Examples
	Denotation of Language Families

	Generative Power
	One-Sided Random Context Grammars
	One-Sided Forbidding Grammars
	One-Sided Permitting Grammars

	Normal Forms
	First Normal Form
	Second Normal Form
	Third Normal Form
	Fourth Normal Form

	Reduction
	Total Number of Nonterminals
	Number of Left and Right Random Context Nonterminals
	Number of Right Random Context Rules

	Leftmost Derivations
	Type-1 Leftmost Derivations
	Type-2 Leftmost Derivations
	Type-3 Leftmost Derivations

	Generalized One-Sided Forbidding Grammars
	Definitions and Examples
	Generative Power

	LL One-Sided Random Context Grammars
	Definitions
	A Motivational Example
	Generative Power

	Part III Conclusion
	Concluding Remarks
	Application Perspectives
	Bibliographical and Historical Remarks
	Open Problem Areas

	References
	Language Family Index
	Subject Index

